Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:24:24.740Z Has data issue: false hasContentIssue false

Epitaxial growth of YbBa2Cu3O7−δ films on (100)-oriented MgO and SrTiO3 substrates by oxidation of a liquid alloy precursor

Published online by Cambridge University Press:  31 January 2011

N. Merchant
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
J.S. Luo
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
V.A. Maroni
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
D.M. Gruen
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
B.S. Tani
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
S. Sinha
Affiliation:
University of Illinois, Chicago, Illinois 60607
K.H. Sandhage
Affiliation:
American Superconductor Corporation, Watertown, Massachusetts 02172
C.A. Craven
Affiliation:
American Superconductor Corporation, Watertown, Massachusetts 02172
Get access

Abstract

Textured superconducting films of YbBa2Cu3O7−δ were grown on single crystals of MgO (100) and SrTiO3 (100) by oxidation of a liquid alloy precursor. The substrates were coated by dipping them in molten YbBa2Cu3 (m.p. ~870 °C). After removal from the melt, the liquid layers on the substrates were oxidized in pure oxygen to form the tetragonal oxide phase, i.e., YbBa2Cu3O7−δ, then annealed at 500 °C to obtain the superconducting orthorhombic phase of the same compound. The microstructure of the films obtained in this way was found to be related to the nature of the substrate as well as to processing variables that included oxidation temperature and oxidation time. Films grown on MgO (100) showed c-axis texture as well as a random growth structure. Films prepared on SrTiO3 (100) showed either a c-axis texture or a mixture of c-axis and a-axis texture. The superconducting properties of the as-prepared films and the effects of key process parameters on film quality and microstructure are presented and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Maeda, H., Tanaka, Y., Fukotomi, M.K., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988); C.W. Chu, J. Bechtold, L. Gao, P.H. Hor, Z.J. Huang, R.L. Meng, Y.Y. Sun, Y.G. Wang, and Y.Y. Xue, Phys. Rev. Lett. 60, 941 (1988).CrossRefGoogle Scholar
3Sheng, Z. Z., Hermann, A. M., Ali, A. E., Almasan, C., Estrada, J., and Datta, T., Phys. Rev. Lett. 60, 937 (1988).Google Scholar
4Chaudhari, P., Koch, R.K., Laibowitz, R.B., McGuire, T.R., and Gambino, R.J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
5Dinger, T.R., Worthington, T. K., Gallagher, W.J., and Sandstrom, R. L., Phys. Rev. Lett. 58, 2687 (1987).CrossRefGoogle Scholar
6Jin, S., Tiefel, T. H., Sherwood, R. C., Dover, R. B. van, Davis, M. E., Kammlott, G.W., and Fastnacht, R.A., Phys. Rev. B 37, 7850 (1988).Google Scholar
7Gruen, D. M., Calaway, W. F., Maroni, V. A., Tani, B. S., and Krauss, A. R., J. Electrochem. Soc. 134, 1588 (1987).CrossRefGoogle Scholar
8Gruen, D.M., to be published in the Proceedings of the Third Annual International Superconductor Applications Convention, ‘SC GLOBAL 90’, Long Beach, CA, Jan. 17-19, 1990.Google Scholar
9Matsuzaki, K., Inoue, A., Kimura, H., Maroishi, K., and Masu-moto, T., Jpn. J. Appl. Phys. 26, L334 (1987).CrossRefGoogle Scholar
10Yurek, G. J., Sande, J. B. Vander, and Wang, W. X., Metall. Trans. A 18, 1813 (1987).CrossRefGoogle Scholar
11Chen, H. S., Liou, S.H., Kortan, A. R., and Kimerling, L. C., Appl. Phys. Lett. 53, 705 (1988).Google Scholar
12Chen, H. S., Kortan, A. R., Thiel, F.A., and Kimerling, L. C., Appl. Phys. Lett. 55, 191 (1989).Google Scholar
13Tarascon, J. M., McKinnon, W. R., Greene, L. H., Hull, G. W., and Vogel, E. M., Phys. Rev. B 36, 226 (1987).Google Scholar
14Sing, R. K., Biunno, N., and Narayan, J., J. Appl. Phys. 65, 2398 (1989).Google Scholar
15Fujita, J., Yoshitaka, T., Kamijo, A., Satoh, T., and Igarshi, I., J. Appl. Phys. 64, 1292 (1988).Google Scholar
16Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V., Phys. Rev. B 36, 8804 (1987).CrossRefGoogle Scholar
17Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Nature 329, 423 (1987).CrossRefGoogle Scholar
18Rothman, S.J., Routbort, J. L., Liu, J. Z., Downey, J.W., Thompson, L.J., Fang, Y., Shi, D., Baker, J.E., Rice, J.P., Ginsberg, D.M., Han, P. D., and Payne, D. A., presented at the TMS Fall Meeting, Indianapolis, IN, Oct. 1-5, 1989.Google Scholar
19Fartash, A., Schuller, I. K., and Pearson, J., J. Appl. Phys. 67, 2524 (1990).CrossRefGoogle Scholar
20Enomoto, Y., Murakami, T., Suzuki, M., and Moriwaki, K., Jpn. J. Appl. Phys. 26, L1248 (1987); Y. Enomoto, M. Suzuki, M. Oda, and T. Murakami, Physica B 148, 408 (1988).CrossRefGoogle Scholar
21Clarke, D.R., Shaw, T.M., and Dimos, D., J. Am. Ceram. Soc. 72, 1103 (1989).Google Scholar
22Shi, D., Salem-Sugui, S. Jr., Wang, Z., Goodrich, L. F., Dou, S. X., Liu, H. K., Guo, Y. C., and Sorrell, C. C., Appl. Phys. Lett. 59, 3171 (1991).Google Scholar
23Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Sandhage, K. H., and Craven, C. A., Physica C 192, 356 (1992).CrossRefGoogle Scholar