Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:05:44.015Z Has data issue: false hasContentIssue false

Epitaxial growth of sol-gel PLZT thin films

Published online by Cambridge University Press:  03 March 2011

Dae Sung Yoon
Affiliation:
Department of Ceramic Science and Engineering, Korea Advanced Institute of Science and Technology, Kusong Dong 373-1, Yusung Gu, Taejon, Korea
Chang Jung Kim
Affiliation:
Department of Ceramic Science and Engineering, Korea Advanced Institute of Science and Technology, Kusong Dong 373-1, Yusung Gu, Taejon, Korea
Joon Sung Lee
Affiliation:
Department of Ceramic Science and Engineering, Korea Advanced Institute of Science and Technology, Kusong Dong 373-1, Yusung Gu, Taejon, Korea
Won Jong Lee
Affiliation:
Department of Electronic Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Kusong Dong 373-1, Yusung Gu, Taejon, Korea
Kwangsoo No
Affiliation:
Department of Ceramic Science and Engineering, Korea Advanced Institute of Science and Technology, Kusong Dong 373-1, Yusung Gu, Taejon, Korea
Get access

Abstract

Epitaxial lead lanthanum zirconate titanate [PLZT(9/50/50)] thin films were fabricated on various single crystal substrates using the spin coating of metallo-organic solutions. The films were heat-treated at 700 °C for 1 h using the direct insertion method. The films were epitaxially grown with (100), (100), and (110) being parallel to the SrTiO3(100), the MgO(100), and the sapphire (0112) substrates, respectively. The epitaxy of the films was investigated using x-ray diffraction, pole figures, rocking curves, and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
2Vest, R. W. and Wu, J., Ferroelectrics 93, 21 (1989).CrossRefGoogle Scholar
3Land, C. E., J. Am. Ceram. Soc. 71, 905 (1988).CrossRefGoogle Scholar
4Peng, C. H., Chang, J., and Desu, S. B., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 21.Google Scholar
5Borrelli, P. J., Ballentine, P. H., and Kadin, A. M., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 417.Google Scholar
6Wegner, A. B., Brueck, S. R. J, and Wu, A. Y., Ferroelectrics 116, 195 (1991).CrossRefGoogle Scholar
7Kawaguchi, T., Adachi, H., Setsune, K., Yamazaki, O., and Kwasa, K., Appl. Opt. 23, 2187 (1984).CrossRefGoogle Scholar
8Paz de Araujo, C. A., McMillan, L. D., Melnick, B. M., Cuchiaro, J. D., and Scott, J. F., Ferroelectrics 104, 241 (1990).CrossRefGoogle Scholar
9Baude, P. F., Ye, C., Tamagawa, T., and Polla, D. L., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 275.Google Scholar
10Ishida, M., Tsuji, S., Kimura, K., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, 393 (1978).CrossRefGoogle Scholar
11Okuyama, M., Usuki, T., Hamakawa, Y., and Nakagawa, T., Appl. Phys. 21, 339 (1980).CrossRefGoogle Scholar
12Baringay, C. K. and Dey, S. K., Appl. Phys. Lett. 61, 1278 (1992).CrossRefGoogle Scholar
13Yoon, D. S., Kim, J. M., Ahn, K. C., and No, K., Integrated Ferroelectrics (1993, in press).Google Scholar
14Rou, S. H., Graettinger, T. M., Chow, A. F., Soble, C. N., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 81.Google Scholar