Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T06:40:22.516Z Has data issue: false hasContentIssue false

Epitaxial growth of β–SiC thin films on a 6H–SiC substrate using the chemical solution deposition method

Published online by Cambridge University Press:  31 January 2011

D. Heimann
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
T. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
J. Bill
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 70174 Stuttgart, Germany
F. F. Lange
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
Get access

Abstract

A polyvinylmethylsilane precursor has been used for the epitaxial growth of SiC thin films on 6H–SiC single crystal substrates. The films were prepared by dipping the single crystal 6H–SiC substrates into the precursor polymer solution with subsequent thermal treatments at different temperatures. Transmission electron microscopy (TEM) was used to characterize the microstructure and chemistry of the different SiC films. At 1100 °C, the film was amorphous and contained substantial oxygen. At 1600 °C, an epitaxial, single crystalline β–SiC film was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmond, J. A., Proc. IEEE 79, 677 (1991).CrossRefGoogle Scholar
2.Kim, H. K. and Davis, R. F. J., J. Elektrochemical Soc. 133, 2350 (1986).CrossRefGoogle Scholar
3.Bloor, D., Brook, R. J., Flemings, M. C., Mahajan, S., and Chan, R. W., The Encyclopedia of Advanced Materials (Pergamon, Oxford, New York, 1994).Google Scholar
4.Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. 14, 297 (1984).CrossRefGoogle Scholar
5.Riedel, R., Passing, G., Schoenfelder, H., and Brook, R. J., Nature 355, 714 (1992).CrossRefGoogle Scholar
6.Lipowitz, J., Ceram. Bull. 70, 1888 (1991).Google Scholar
7.Heimann, D., Bill, J., and Aldinger, F., 4th European Conf. on Advanced Materials and Processes, Padua/Venice (1995), p. 135.Google Scholar
8.Kienzle, A., Thesis, Universität Stuttgart (1994).Google Scholar
9.Schilling, C. L. and Kanner, B., “Polysilane Precursors Containing Olefinic Groups for Silicon Carbide,” Offenlegungsschrift EP-58195.Google Scholar
10.Sakka, S. and Yoko, T., Sol-Gel Derived Coating Films and Applications, Structure and Bonding (Springer, 1992), Vol. 77.Google Scholar
11.Strecker, A., Salzberger, U., and Mayer, J., Praktische Metallographie 30, 481 (1993).Google Scholar
12.Kong, H. S., Glass, J. T., and Davis, R. F., J. Mater. Res. 4, 204 (1989).CrossRefGoogle Scholar
13.Kong, H. S., Jiang, B. L., Glass, J. T., and Rozgonyi, G. A., J. Appl. Phys. 63, 2645 (1988).CrossRefGoogle Scholar
14.Powell, J. A.et al., Appl. Phys. Lett. 59, 183 (1991).CrossRefGoogle Scholar
15.Pirouz, P. and Hazzledine, P. M., Solid State Phenomena 35–36, 183216 (1994).Google Scholar
16.Kimoto, T., Nishino, H., Yoo, W. S., and Matsunami, H., J. Appl. Phys. 73 (2), 726732 (1993).CrossRefGoogle Scholar
17.Powell, J. A., Larkin, D. J., Abel, P. B., and Zhou, L., Proc. Int. Conf. on Silicon Carbide and Related Materials, Kyoto, Japan, 18–21 Sept. 1995, edited by Nakashima, S., Matsunami, H., Yoshida, S., and , H. (IOP Publishing, Bristol, U.K., 1996), pp. 7780.Google Scholar