Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T05:52:48.311Z Has data issue: false hasContentIssue false

Epitaxial growth of PbZr0.5Ti0.5O3 thin films on (001) LaAlO3 by the chemical solution deposition method

Published online by Cambridge University Press:  31 January 2011

J. H. Kim
Affiliation:
Department of Ceramic Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Ku, Kwangju, 500–757, South Korea
F. F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on (001) LaAlO3 substrates (∼6.1% lattice mismatch) by the chemical solution deposition method. The sequence of epitaxy during heating between 375 and 700 °C/1h was characterized by x-ray diffraction and transmission electron microscopy. At approximately 375 °C/1h, a nanocrystalline metastable fluorite phase of PZT was formed from the pyrolyzed amorphous precursor. At higher temperatures (400–425 °C/1h), thermodynamically stable PZT crystallites were first observed at the interface; with increasing higher temperatures, these nuclei grew across the interface and through the film toward the surface by consuming the metastable nanocrystalline fluorite grains. PZT thin films annealed above ∼500 °C/1h were observed to be dense with an epitaxial orientation relationship of [100](001)PZT‖[100](001)LAO. The metastable nanocrystalline fluorite to the stable single-crystal perovskite transformation gives an extra driving force by providing an additional decrease in free energy in addition to a driving force from the elimination of grain boundary area for epitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sheppard, L.M., Ceram. Bull. 71, 85 (1992).Google Scholar
2.Haertling, G.H., J. Vac. Sci. Technol., A 9, 414 (1991).Google Scholar
3.Okamura, T., Adachi, M., Shiosaki, T., and Kawabata, A., Jpn. J. Appl. Phys. 30, 1034 (1991).CrossRefGoogle Scholar
4.De Veirman, A.E.M, Cillessen, J.F.M, De Keijser, M., Wolf, R.M., Taylor, D.J., Staals, A.A., and Dormans, G.J.M, in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 329.Google Scholar
5.Foster, C.M., Bai, G-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).CrossRefGoogle Scholar
6.Nashimoto, K., Fork, D.K., and Anderson, G.B., Appl. Phys. Lett. 66, 822 (1995).Google Scholar
7.Bauer, E.G., Dodson, B.W., Ehrlich, D.J., Feldman, L.C., Flynn, C.P., Geis, M.W., Harbison, J.P., Matyi, R.J., Peercy, P.S., Tetroff, P.M., Phillips, J.M., Stringfellow, G.B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).Google Scholar
8.Kim, J.H. and Lange, F.F., in Ferroelectric Thin Films VI, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 323;Google Scholar
Kim, J.H. and Lange, F.F., J. Mater. Res. 14, 1626 (1999).Google Scholar
9.Seifert, A., Lange, F.F., and Speck, J., J. Mater. Res. 10, 680 (1995).Google Scholar
10.Voigt, J.A., Tuttle, B.A., Headley, T.J., and Lamppa, D.L., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 395.Google Scholar
11.Takayama, R. and Tomita, Y., J. Appl. Phys. 65, 1666 (1989).Google Scholar
12.Sawaguchi, E., J. Phys. Soc. Jpn. 8, 615 (1953).Google Scholar
13.Budd, K.D., Dey, S.K., and Payne, D.A., Br. Cer. Proc. 36, 107 (1985).;Google Scholar
Budd, K.D., Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL (1986).Google Scholar
14.Blum, J.B. and Gurkovich, S.R., J. Mater. Sci. 20, 4479 (1985).CrossRefGoogle Scholar
15.Higuchi, K., Miyazawa, K., Sakuma, T., and Suzuki, K., J. Mater. Sci. 29, 436 (1994).Google Scholar
16.Nashimoto, K., Nakaumra, S., and Moriyama, H., Jpn. J. Appl. Phys. 34, 5091 (1995).Google Scholar
17.Hsueh, C-C. and Mecartney, M.L., J. Mater. Res. 6, 2208 (1991).Google Scholar
18.Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, T.J., Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, J., and Carim, A.H., J. Mater. Res. 7, 1876 (1992).Google Scholar
19.Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., and Lockwood, S.J., J. Mater. Res. 11, 2076 (1996).Google Scholar
20.Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., and Warren, W.L., J. Mater. Res. 11, 2309 (1996).CrossRefGoogle Scholar
21.Leung, D.K., Chang, C.J., Ruhle, M., and Lange, F.F., J. Am. Ceram. Soc. 74, 2786 (1991).Google Scholar
22.Balmer, M.L., Lange, F.F., and Levi, C.G., J. Am. Ceram. Soc. 75, 946 (1992).Google Scholar
23.Lange, F.F., Science 273, 903 (1996).Google Scholar
24.Miller, K.T., Chan, C.J., Cain, M.G., and Lange, F.F., J. Mater. Res. 8, 169 (1993).Google Scholar