Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T13:44:42.692Z Has data issue: false hasContentIssue false

Epitaxial growth of Cu2O films on MgO by sputtering

Published online by Cambridge University Press:  31 January 2011

Dean J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Jeffrey D. Hettinger
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Ronald P. Chiarello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Hyung K. Kim
Affiliation:
Department of Physics, Pusan National University, Pusan, Korea
Get access

Abstract

The epitaxial growth of Cu2O films is of significant interest for the unique potential they offer in the development of multilayer devices and superlattices. While fundamental studies may be carried out on epitaxial films prepared by any technique, the growth of artificially layered superlattices requires that films grow epitaxially during deposition. The present study examined the growth of Cu2O on MgO substrates directly during deposition by sputtering. Although epitaxial thin films of Cu2O could be produced, a mosaic structure was observed. The structure of the film may be related to the growth mechanism in which islands coalesce to form a continuous film.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Drobny, V. F. and Pulfrey, D. L., 13th IEEE Photov. Spec. Conf. (IEEE, New York, 1978), pp. 180183.Google Scholar
2Fujinaka, M. and Berezin, A. A., J. Appl. Phys. 54 (6), 35823588 (1983).CrossRefGoogle Scholar
3Rakhshani, A.E., Solid-State Electron. 29 (1), 717 (1986).CrossRefGoogle Scholar
4Beensh-Marchwicka, G., Krol-Stepniewska, L., and Slaby, M., Thin Solid Films 88, 3339 (1982).CrossRefGoogle Scholar
5Miller, D. J., Chiarello, R. P., Kim, H. K., Roberts, T., You, H., Kampwirth, R. T., Gray, K. E., Zheng, J. Q., Williams, S., Ketterson, J. B., and Chang, R.P.H., Appl. Phys. Lett. 59, 3174-3176 (1991).Google Scholar
6Do, K.B., Arnason, S.B., Carey, G.P., Ahn, C.H., Hammond, R.H., Beasley, M. R., and Geballe, T. H., work presented at the spring 1991 APS meeting, Cincinnati, OH.Google Scholar
7Klein, W., Schmitt, H., and Boffgen, M., Thin Solid Films 191, 247254 (1990).CrossRefGoogle Scholar
8Holzschuh, H. and Suhr, H., J. Appl. Phys. A 51, 486490 (1990).CrossRefGoogle Scholar
9Luzeau, P., Luzea, X.Z.P., Xu, X. Z., Lagues, M., Hess, N., Contour, J.P., Nanot, M., Queyroux, F., Touzeau, M., and Pagnon, D., J. Vac. Sci. Technol. A 8 (6), 3938 (1990).CrossRefGoogle Scholar
10Tsiranovits, Ch., Antonopoulos, J. G., and Stoemenos, J., Thin Solid Films 71, 133140 (1980).CrossRefGoogle Scholar