Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T10:54:56.547Z Has data issue: false hasContentIssue false

Environmental embrittlement of γ titanium aluminide

Published online by Cambridge University Press:  31 January 2011

T. Takasugi
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980, Japan
S. Hanada
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980, Japan
M. Yoshida
Affiliation:
Miyagi National College of Technology, Natori, Miyagi-prefecture 981-12, Japan
Get access

Abstract

The environmental embrittlement for the nearly stoichiometric TiAl compound, the microstructure of which consists of monophase γ with equiaxed grains, was evaluated by tensile tests, to determine the effects of the atmospheres used (vacuum, O2 gas, air, and H2 gas) and the testing temperatures (R.T. to 1173 K). At room temperature, the highest elongation and UTS values were observed in the samples tested in vacuum, while the worst values were observed in the samples tested in H2 gas. Transgranular cleavage fracture was dominant and primarily independent of the environmental media. At intermediate temperatures, the samples tested in vacuum exhibited higher elongation and UTS values than those tested in air. Intergranular fracture became more dominant as temperature increased but was insensitive to the environmental media. Based on these results, the mechanism responsible for the observed environmental embrittlement and the implications were discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, Y-W., J. Metals 41 (7), 24 (1989).Google Scholar
2Yamaguchi, M., Nishitani, S. R., and Shirai, Y., High Temperature Aluminide and Intermetallics, edited by Whang, S.H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (TMS, Warrendale, PA, 1990), p. 63.Google Scholar
3Stoloff, N. S., J. Metals 40 (12), 23 (1988).Google Scholar
4Liu, C.T., Fu, C. L., George, E.P., and Painter, G.S., ISU International 31, 1192 (1991).CrossRefGoogle Scholar
5Takasugi, T., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 403.Google Scholar
6Eliezer, D., Froes, F.H., and Suryanarayana, C., JOM 43 (3), 59 (1991).CrossRefGoogle Scholar
7Ronald, T., Summary Proc. of 2nd Workshop on Hydrogen-Materials Interactions, NASP Workshop Publ. 1004, NASA, Nov. (1988).Google Scholar
8Chu, W-Y., Thompson, A. W., and Williams, J. C., Acta Metall. Mater. 40, 455 (1992).CrossRefGoogle Scholar
9Manor, E. and Eliezer, D., Scripta Metall. Mater. 24, 129 (1990).CrossRefGoogle Scholar
10Manor, E. and Eliezer, D., Scripta Metall. 23, 1313 (1989).CrossRefGoogle Scholar
11Shih, D.S., Scarr, G. K., and Wasilewski, G.E., Scripta Metall. 23, 973 (1989).CrossRefGoogle Scholar
12Schwartz, D. S., Yelon, W. B., Berliner, R. R., Lederich, R. J., and Sastry, S.M.L., Acta Metall. Mater. 39, 2799 (1991).CrossRefGoogle Scholar
13Chu, W-Y. and Thompson, A. W., Scripta Metall. Mater. 25, 2133 (1991).Google Scholar
14Matejczyk, D. E. and Rhodes, C. G., Scripta Metall. Mater. 24, 1369 (1990).CrossRefGoogle Scholar
15McCullough, C., Valencia, J. J., Levi, C. G., and Mehrabian, R., Acta Metall. 37, 1321 (1989).CrossRefGoogle Scholar
16Murray, J. L., Binary Alloy Phase Diagrams, edited by Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L. (ASM, Metals Park, OH, 1986), Vol. 1.Google Scholar
17Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.Google Scholar
18Liu, C.T. and Takeyama, M., Scripta Metall. 24, 1583 (1990).Google Scholar
19Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).CrossRefGoogle Scholar
20Wan, X. J., Zhu, J. H., and Jing, K. L., Scripta Metall. Mater. 26, 473 (1992).Google Scholar
21Takasugi, T., Acta Metall. Mater. 39, 2157 (1991).CrossRefGoogle Scholar
22Liu, Y., Takasugi, T., Izumi, O., and Takahashi, T., Acta Metall. 37, 507 (1989).Google Scholar
23Kawabata, T., Kanai, T., and Izumi, O., Acta Metall. 33, 1355 (1985).CrossRefGoogle Scholar
24Takasugi, T., Takazawa, M., and Izumi, O., J. Mater. Sci. 25, 4231 (1990).Google Scholar
25Takasugi, T., Suenaga, H., and Izumi, O., J. Mater. Sci. 26, 1179 (1991).Google Scholar
26Takasugi, T. and Yoshida, M., J. Mater. Sci. 26, 3023 (1991).Google Scholar
27Liu, C. T., White, C. L., and Lee, E. H., Scripta Metall. 19, 1247 (1985).Google Scholar
28Taub, A. I., Chang, K. M., and Liu, C. T., Scripta Metall. 20, 1613 (1986).Google Scholar