Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T21:39:28.422Z Has data issue: false hasContentIssue false

Environmental effect on mechanical properties of TiAl base alloys

Published online by Cambridge University Press:  18 February 2016

Morihiko Nakamura
Affiliation:
National Research Institute for Metals, Meguro-ku, Tokyo 153, Japan
Kenki Hashimoto
Affiliation:
National Research Institute for Metals, Meguro-ku, Tokyo 153, Japan
Tokuzo Tsujimoto
Affiliation:
National Research Institute for Metals, Meguro-ku, Tokyo 153, Japan
Get access

Extract

Mechanical properties of TiAl base alloys were studied with three-point bending tests in vacuum, air, and gaseous hydrogen. The TiAl-Mn and TiAl (50:50) alloys homogenized at 1273 K exhibited relatively good bend ductility (about 2.5–3.0%) in vacuum, and poor ductility (about 1%) in air and hydrogen. The Ti-rich and Al-rich TiAl alloys, which exhibited little ductility even in vacuum, hardly showed any environmental effect on ductility. These facts may suggest that the mechanical properties of TiAl base alloys are affected at room temperature by the laboratory air and hydrogen, and that plastic deformation plays an important role in environmental embrittlement of TiAl base alloys at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakazawa, K., Fukutomi, K., and Kawabe, Y., J. Jpn. Inst. Met. 46, 1163 (1982).CrossRefGoogle Scholar
2. Kawabe, Y., Muneki, S., and Takahashi, J., Tetsu-to-Hagané 69, 1163 (1983).CrossRefGoogle Scholar
3. Nakamura, M. and Furubayashi, E., Metall. Trans. A 14A, 717 (1983).Google Scholar
4. Nakamura, M. and Furubayashi, E., Trans. Jpn. Inst. Met. 28, 957 (1987).Google Scholar
5. Nakamura, M. and Furubayashi, E., Mater. Sci. Technol. 5, 584 (1989).CrossRefGoogle Scholar
6. Nakamura, M. and Furubayashi, E., Mater. Sci. Technol. 6, 604 (1990).CrossRefGoogle Scholar
7. Kuruvilla, A. K. and Stoloff, N. S., Scripta Metall. 19, 83 (1985).CrossRefGoogle Scholar
8. Takasugi, T. and Izumi, O., Acta Metall. 37, 607 (1986).Google Scholar
9. Liu, Y., Takasugi, T., Izumi, O., and Suenaga, H., J. Mater. Sci. 24, 4458 (1989).Google Scholar
10. Takasugi, T., Nagashima, M., and Izumi, O., Acta Metall. 38, 747 (1990).CrossRefGoogle Scholar
11. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. A 19A, 353 (1988).Google Scholar
12. Liu, C.T. and Oliver, W.C., Scripta Metall. 25, 1993 (1991).Google Scholar
13. Nishimura, C. and Liu, C.T., Scripta Metall. 25, 791 (1991).Google Scholar
14. Liu, C.T., Lee, E.H., and Mckamery, C.G., Scripta Metall. 23, 875 (1989).CrossRefGoogle Scholar
15. Liu, C.T., Mckamery, C.G., and Lee, E.H., Scripta Metall. 24, 385 (1990).CrossRefGoogle Scholar
16. Liu, C.T. and George, E.P., Scripta Metall. 24, 1285 (1990).CrossRefGoogle Scholar
17. Manor, E. and Eliezer, D., Scripta Metall. 23, 1318 (1989).Google Scholar
18. Eliezer, D., Froes, F. H., and Suryanarayana, C., JOM 43, 59 (1991).CrossRefGoogle Scholar
19. Nakamura, M. and Kaieda, Y., Powder Met. 33, 133 (1990).Google Scholar
20. Nakamura, M. and Kaieda, Y., Powder Met. 31, 201 (1988).Google Scholar
21. Hashimoto, K., Nobuki, M., Doi, H., Nakamura, M., Tsujimoto, T., and Suzuki, T., Proc. Jpn. Inst. Met. Symp. on Intermetallic Compounds, edited by Izumi, O. (1991), p. 457, Jpn. Inst. Met., Sendai, Japan.Google Scholar
22. Kim, Y-W., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L.A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 777.Google Scholar