Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T13:15:44.598Z Has data issue: false hasContentIssue false

Entrapment of elongated and crystallographically aligned pores in YBa2Cu3O7−y melt-textured with BaCeO3 addition

Published online by Cambridge University Press:  31 January 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305–600, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305–600, Korea
Suk-Joong L. Kang
Affiliation:
Center for Interface Science and Engineering of Materials, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong, Yousong-gu, Taejon 305–701, Korea
Get access

Abstract

Compared to entrapped spherical pores in YBa2Cu3O7−y (123) crystals melt-textured without additives, the pores entrapped within 123 crystals melt-textured with 5 wt% BaCeO3 are elongated and aligned parallel to (100), (010), and (001) growth planes of the 123 crystals. The front side of the pores that meets first the growth front of the 123 crystal is faceted but the backside is wavy. Many BaCeO3 particles are segregated at the wavy surface. The crystallographic alignment of the elongated pores and the segregation of BaCeO3 particles are discussed in terms of the contact angle of the pores on the growth front and interfacial energy relationships between the related phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Varanasi, C. and McGinn, P. J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
2.Kim, C-J., Lai, S. H., and McGinn, P. J., Mater. Lett. 19, 185 (1994).CrossRefGoogle Scholar
3.Kim, C-J., Kim, K-B., Hong, G-W., and Lee, H-Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
4.Vandewalle, N., Ausloos, M., Mineur, N., Cloots, R., Hong, G-W., and Kim, C-J., Supercond. Sci. Technol. 9, 665 (1996).CrossRefGoogle Scholar
5.Endo, A., Chauhan, H. S., Egi, T., and Shiohara, Y., J. Mater. Res. 11, 795 (1996).CrossRefGoogle Scholar
6.Kim, C-J., Kim, K-B., Kuk, I-H., and Hong, G-W., J. Mater. Res. 13, 269 (1998).Google Scholar
7.Rigby, K., Cima, M. J., Fleming, M. C., Haggerty, J. S., Honjo, S., and Sung, T. H., Extended Abstract–Int. Workshop on Superconductivity, Maui, Hawaii (1995), p. 55.Google Scholar
8.Jee, Y. A., Kang, S-J. L., and Chung, H. S., J. Mater. Res. 13, 583 (1998).CrossRefGoogle Scholar
9.Kim, C-J., Lee, H-G., Kim, K-B., and Hong, G-W., J. Mater. Res. 10, 2235 (1995).CrossRefGoogle Scholar
10.Lee, H-Y., Kim, C-J., and Hong, G-W., J. Am. Ceram. Soc. 79, 2921 (1996).Google Scholar
11.Cho, S-J., Kang, S-J. L., and Yoon, D. N., Metall. Trans. 17A, 2175 (1986).CrossRefGoogle Scholar
12.Baik, S. and White, C., J. Am. Ceram. Soc. 70, 682 (1987).CrossRefGoogle Scholar
13.Marcus, H. L. and Fine, M. E., J. Am. Ceram. Soc. 55, 568 (1972).CrossRefGoogle Scholar
14.Jorgensen, P. J. and Westbrook, J. H., J. Am. Ceram. Soc. 47, 332 (1974).CrossRefGoogle Scholar
15.Stefanescu, D. M., Dhindaw, B. K., Kacar, S. A., and Morita, A., Metall. Trans. 19A, 2847 (1993).Google Scholar
16.Uhlmann, D. R., Charlmers, B., and Jackson, K. A., J. Appl. Phys. 35, 2986 (1964).CrossRefGoogle Scholar