Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T10:19:04.708Z Has data issue: false hasContentIssue false

Enhancing bulk metallic glass formation in Ni–Nb–Sn-based alloys via substitutional alloying with Co and Hf

Published online by Cambridge University Press:  31 January 2011

Li Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Mu-Jin Zhuo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Bulk metallic glasses have been formed over a fairly wide composition range (54–62 at.% Ni, 32–36 at.% Nb, and 3–11 at.% Sn) in the Ni–Nb–Sn ternary system. Partial substitution of Co for Ni and Hf for Nb improves the glass-forming ability, eventually leading to 4 mm glassy rods at the Ni56Co3Nb28Hf8Sn5 composition. The positive effects of these alloying elements have been explained based on a systematic monitoring of the amount and morphology of the competing crystalline phases as a function of the Co and Hf contents.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ruhl, R.C., Giessen, B.C., Cohen, M., Grant, N.J.: New microcrystalline phases in the Nb–Ni and Ta–Ni systems. Acta Metall. 15, 1693 1967CrossRefGoogle Scholar
2Lin, C.J., Spaepen, F.: Nickel–niobium alloys obtained by picosecond pulsed laser quenching. Acta Metall. 34, 1367 1986CrossRefGoogle Scholar
3Leonhardt, M., Löser, W., Lindenkreuz, H.G.: Solidification kinetics and phase formation of undercooled eutectic Ni–Nb melts. Acta Mater. 47, 2961 1999CrossRefGoogle Scholar
4Xia, L., Li, W.H., Fang, S.S., Wei, B.C., Dong, Y.D.: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 2006CrossRefGoogle Scholar
5Inoue, A., Zhang, W., Zhang, T.: Thermal stability and mechanical strength of bulk glassy Ni–Nb–Ti–Zr alloys. Mater. Trans. 43, 1952 2002CrossRefGoogle Scholar
6Zhang, W., Inoue, A.: Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys. Scripta Mater. 48, 641 2003CrossRefGoogle Scholar
7Zhang, T., Inoue, A.: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 2002CrossRefGoogle Scholar
8Lee, M.H., Bae, D.H., Kim, W.T., Kim, D.H.: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans. 44, 2084 2003CrossRefGoogle Scholar
9Choi-Yim, H., Xu, D.H., Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 2003CrossRefGoogle Scholar
10Mukherjee, S., Zhou, Z.H., Johnson, W.L., Rhim, W.K.: Thermophysical properties of Ni–Nb and Ni–Nb–Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing. J. Non-Cryst. Solids 337, 21 2004CrossRefGoogle Scholar
11Shen, B.L., Chang, C.T., Inoue, A.: Ni-based bulk glassy alloys with superhigh strength of 3800 MPa in Ni–Fe–B–Si–Nb system. Appl. Phys. Lett. 88, 201903 2006CrossRefGoogle Scholar
12Kawashima, A., Habazaki, H., Hashimoto, K.: Highly corrosion-resistant Ni-based bulk amorphous alloys. Mater. Sci. Eng. 304–306, 753 2001CrossRefGoogle Scholar
13Wang, A.P., Zhang, T., Wang, J.Q.: Ni-based fully amorphous metallic coating with high corrosion resistance. Philos. Mag. Lett. 86, 5 2006CrossRefGoogle Scholar
14Ishida, M., Takeda, H., Nishiyama, N., Kita, K., Shimizu, Y., Saotome, Y., Inoue, A.: Wear resistivity of super-precision microgear made of Ni-based metallic glass. Mater. Sci. Eng. 449–451, 149 2007CrossRefGoogle Scholar
15Lee, J.Y., Bae, D.H., Lee, J.K., Kim, D.H.: Bulk glass formation in the Ni–Zr–Ti–Nb–Si–Sn alloy system. J. Mater. Res. 19, 2221 2004CrossRefGoogle Scholar
16Xu, D.H., Duan, G., Johnson, W.L., Garland, C.: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 2004CrossRefGoogle Scholar
17Zeng, Y.Q., Nishiyama, N., Wada, T., Louzguine-Luzgin, D.V., Inoue, A.: Ni-rich Ni–Pd–P glassy alloy with high strength and good ductility. Mater. Trans. 47, 175 2006CrossRefGoogle Scholar
18Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B., Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 2005CrossRefGoogle Scholar
19Lu, Z.P., Liu, C.T., Thompson, J.R., Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 2004CrossRefGoogle ScholarPubMed
20Ponnambalam, V., Poon, S.J., Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 2004CrossRefGoogle Scholar
21Xu, D.H., Duan, G., Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 2004CrossRefGoogle ScholarPubMed
22Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 2006CrossRefGoogle Scholar
23Jia, P., Guo, H., Li, Y., Xu, J., Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Mater. 54, 2165 2006CrossRefGoogle Scholar
24Ma, H., Shi, L.L., Xu, J., Li, Y., Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005CrossRefGoogle Scholar
25Inoue, A., Nishiyama, N., Kimura, H.: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 1997CrossRefGoogle Scholar
26Schroers, J., Johnson, W.L.: Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl. Phys. Lett. 84, 3666 2004CrossRefGoogle Scholar
27Peker, A., Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
28Inoue, A., Zhang, T.: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 1996CrossRefGoogle Scholar
29Guo, F.Q., Poon, S.J., Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 2003CrossRefGoogle Scholar
30Jiang, Q.K., Zhang, G.Q., Yang, L., Wang, X.D., Saksl, K., Franz, H., Wunderlich, R., Fecht, H., Jiang, J.Z.: La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater. 55, 4409 2007CrossRefGoogle Scholar
31Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
32Ma, H., Zheng, Q., Xu, J., Li, Y., Ma, E.: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 2005CrossRefGoogle Scholar
33Ma, H., Shi, L.L., Xu, J., Li, Y., Ma, E.: Improving glass-forming ability of Mg–Cu–Y via substitutional alloying: Effects of Ag versus Ni. J. Mater. Res. 21, 2204 2006CrossRefGoogle Scholar
34Zheng, Q., Ma, H., Ma, E., Xu, J.: Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scripta Mater. 55, 541 2006CrossRefGoogle Scholar
35Shen, B.L., Inoue, A.: Glass transition behavior and mechanical properties of Ni–Si–B-based glassy alloys. Mater. Trans. 44, 1425 2003CrossRefGoogle Scholar
36Wang, L.M., Li, C.F., Inoue, A.: Formation and mechanical properties of bulk glassy Ni57−xTi23Zr15Si5Pdx alloys. Mater. Trans. 42, 886 2001CrossRefGoogle Scholar
37Liang, W.Z., Shen, J., Sun, J.F.: Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy. J. Alloys Compd. 420, 94 2006CrossRefGoogle Scholar
38Boettinger, W.J.: Growth kinetic limitations during rapid solidification in Rapidly Solidified Amorphous and Crystalline Alloys, edited by B.H. Kear, B.C. Giessen, and M. Cohen Elsevier Science Publishing North Holland, New York 1982 15Google Scholar
39Li, Y.: Bulk metallic glasses: Eutectic coupled zone and amorphous formation. JOM 57, 60 2005CrossRefGoogle Scholar
40Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H., Inoue, A.: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006CrossRefGoogle Scholar
41Biloni, H., Boettinger, W.J.: Solidification in Physical Metallurgy,, 4th ed., edited by R.W. Cahn and P. Haasen (Elsevier Science BV, Switzerland) 1996 763CrossRefGoogle Scholar
42de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Nissen, A.K.: Cohesion in Metals: Transition Metal Alloys North Holland Amsterdam 1988Google Scholar
43Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 2005CrossRefGoogle Scholar
44Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006CrossRefGoogle ScholarPubMed