Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:29:10.915Z Has data issue: false hasContentIssue false

Enhancement of plasticity in Zr-based bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

X.D. Wang*
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
L. Yang
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
J.Z. Jiang*
Affiliation:
International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
K. Saksl
Affiliation:
HASYLAB am DESY, D-22603 Hamburg, Germany
H. Franz
Affiliation:
HASYLAB am DESY, D-22603 Hamburg, Germany
H-J. Fecht
Affiliation:
Department of Materials, Faculty of Engineering, University of Ulm, D-89081 Ulm, Germany; and Forschungszentrum Karlsruhe, Institut für Nanotechnologie, Karlsruhe, Germany
Y.G. Liu
Affiliation:
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, People’s Republic of China
H.S. Xian
Affiliation:
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. [email protected]
Get access

Abstract

We present evidence that a minor adjustment in Zr/Ni concentration ratio can dramatically enhance the plasticity of monolithic Zr-based bulk metallic glasses (BMGs) from about 2.2% for Zr65Al8Ni10Cu17 BMG to 14% for Zr62Al8Ni13Cu17 BMG. No deformation-induced nanocrystallization appears in a 55% strained Zr62Al8Ni13Cu17 BMG without catastrophic failure while pre-existing nanocrystals in Zr65Al8Ni10Cu17 BMG result in its limited plasticity. Also note that the stability of Zr62Al8Ni13Cu17 BMG against crystallization upon deformation is somewhat higher than that of Zr65Al8Ni10Cu17 BMG. As determined by x-ray diffraction using synchrotron radiation, the enhanced plasticity of Zr62Al8Ni13Cu17 BMG seems to be related to the relative homogeneity of the amorphous structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bruck, H.A., Christman, T., Rosakis, A.J.Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 1994CrossRefGoogle Scholar
2Inoue, A., Fan, C., Saida, J.Zhang, T.: High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles. Sci. Technol. Adv. Mater. 1, 73 2000CrossRefGoogle Scholar
3Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K.Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
4Calin, M., Eckert, J.Schultz, L.: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 2003CrossRefGoogle Scholar
5Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
6Kühn, U., Eckert, J., Mattern, N.Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002CrossRefGoogle Scholar
7Fan, C., Ott, R.T.Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002CrossRefGoogle Scholar
8Kanungo, B.P., Glade, S.C., Asoka-Kumar, P.Flores, K.M.: Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics 12, 1073 2004CrossRefGoogle Scholar
9Wright, W.J., Hufnagel, T.C.Nix, W.D.: Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 93, 1432 2003CrossRefGoogle Scholar
10Bengus, V., Tabachnikova, E., Csach, K., Miskuf, J.Ocelik, V.: Possible local superplasticity of amorphous metallic alloys in the catastrophic shear band under low temperature ductile shear failure. Scripta Mater. 35, 781 1996CrossRefGoogle Scholar
11Lewandowski, J.J.Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 2006CrossRefGoogle Scholar
12Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
13Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
14Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
15Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H.Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 2006CrossRefGoogle Scholar
16Chen, M.W., Inoue, A., Zhang, W.Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 2006CrossRefGoogle ScholarPubMed
17Lee, S-W., Huh, M-Y., Fleury, E.Lee, J-C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006CrossRefGoogle Scholar
18Zhang, Z.F., Eckert, J.Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003CrossRefGoogle Scholar
19Xing, L.Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B, 64, 180201(R) 2001CrossRefGoogle Scholar
20Kato, H., Saida, J.Inoue, A.: Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5−xPdx (x = 0, 17.5) alloys. Scripta Mater. 51, 1063 2004CrossRefGoogle Scholar
21Bouchard, R., Hupfeld, D., Lippmann, T., Neuefeind, J., Neumann, H-B., Poulsen, H.F., Rütt, U., Schmidt, T., Schneider, J.R., Süssenbach, J.von Zimmermann, M.: A triple-crystal diffractometer for high energy synchrotron radiation at the HASYLAB high field wiggle beamline BW5. Synchrotron Radiat. 5, 90 1998CrossRefGoogle Scholar
22Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N.Häusermann, D.: Two-dimensional detector software: From real detector to idealized image or two theta scan. High Press. Res. 14, 235 1996CrossRefGoogle Scholar
23Jeong, I-K., Thompson, J., Turner, A.M.P.Billinge, S.J.L.: PDFgetX: A program for obtaining the atomic pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 34, 536 2001CrossRefGoogle Scholar
24Li, W., Wang, Y., Cai, M.Wang, C.W.: An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds. J. Appl. Phys. 98, 083503 2005CrossRefGoogle Scholar
25Kioussis, N., Herbranson, M., Collins, E.Eberhart, M.E.: Topology of electronic charge density and energetics of planar faults in planar faults in fcc metals. Phys. Rev. Lett. 88, 125501 2002CrossRefGoogle ScholarPubMed