Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:20:24.278Z Has data issue: false hasContentIssue false

Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni–Ta bulk glassy alloy via introducing the structural inhomogeneity

Published online by Cambridge University Press:  31 January 2011

Jin Man Park
Affiliation:
Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
Do Hyang Kim*
Affiliation:
Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
Ki Buem Kim
Affiliation:
Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea
Eric Fleury
Affiliation:
Advanced Metal Research Center, Korea Institute of Science and Technology, Seoul, 130-650, Korea
Min Ha Lee
Affiliation:
Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-840, Korea
Won Tae Kim
Affiliation:
Applied Science Division, Cheongju University, Cheongju 360-764, Korea
Jürgen Eckert
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Technische Universität (TU) Dresden, Institute of Materials Science, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of microstructural inhomogeneities with different length scale on the plasticity of (Ti45Zr16Be20Cu10Ni9)100–xTax (x = 0, 5, and 10) bulk glassy alloys has been studied. The formation of specific heterogeneous microstructures with a different type of structural inhomogeneity, i.e., short-/medium-range ordered clusters or micrometer-scale ductile dendrites combined with a glassy matrix, evolved by appropriately tuning the alloy chemistry, improves the room temperature plasticity up to ∼12.5% and ∼15%, respectively. The pronouncedly enhanced plasticity is mainly attributed to the retardation of shear localization and multiplication of shear bands by controlling the plastic and failure instabilities otherwise responsible for premature failure.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spaepen, F.: Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
2Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
3Johnson, W.L.: Bulk glass-forming metallic alloys. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
4Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979CrossRefGoogle Scholar
5Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
6Park, J.M., Park, J.S., Kim, D.H., Kim, J-H., Fleury, E.: Formation, and mechanical and magnetic properties of bulk ferromagnetic Fe–Nb–B–Y–(Zr, Co) alloys. J. Mater. Res. 21, 1019 2006CrossRefGoogle Scholar
7Löffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 2003CrossRefGoogle Scholar
8Yavari, A.R., Lewandowski, J.J., Eckert, J.: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 2007CrossRefGoogle Scholar
9Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 2007CrossRefGoogle Scholar
10Eckert, J., Das, J., Pauly, S., Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 2007CrossRefGoogle Scholar
11Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 1998CrossRefGoogle Scholar
12Park, J.M., Park, J.S., Kim, J-H., Chang, H.J.: Mechanical behaviors of partially devitrified Ti-based bulk metallic glasses. J. Mater. Sci. 40, 4999 2005CrossRefGoogle Scholar
13Ohkubo, T., Nagahama, D., Mukai, T., Hono, K.: Stress-strain behaviors of Ti-based bulk metallic glass and their nanostructures. J. Mater. Res. 22, 1406 2007CrossRefGoogle Scholar
14Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
15Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B: Condens. Matter 64, 180201 2001CrossRefGoogle Scholar
16Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
17Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 2005CrossRefGoogle Scholar
18Park, J.M., Chang, H.J., Han, K.H., Kim, W.T., Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scr. Mater. 53, 1 2005CrossRefGoogle Scholar
19Eckert, J., Das, J., Pauly, S., Duhamel, C., Kim, K.B., Yi, S., Wang, W.H.: Impact of microstructural inhomogeneities on the ductility of bulk metallic glasses. Mater. Trans. 48, 1806 2007CrossRefGoogle Scholar
20Fan, C., Ott, R.T., Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002CrossRefGoogle Scholar
21Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 2003CrossRefGoogle Scholar
22Kim, Y.C., Fleury, E., Lee, J.C., Kim, D.H.: Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass. J. Mater. Res. 20, 2474 2005CrossRefGoogle Scholar
23Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
24Kühn, U., Eckert, J., Mattern, N., Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendrite bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002CrossRefGoogle Scholar
25Zhang, Y., Xu, W., Tan, H., Li, Y.: Microstructure control and ductility improvement of La–Al–(Cu, Ni) composites by Bridgman solidification. Acta Mater. 53, 2607 2005CrossRefGoogle Scholar
26Choi-Yim, H., Busch, R., Köster, U., Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 1999CrossRefGoogle Scholar
27Conner, R.D., Choi-Yim, H., Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 1999CrossRefGoogle Scholar
28Kim, C.P., Busch, R., Masuhr, A., Choi-Yim, H., Johnson, W.L.: Processing of carbon-fiber-reinforced ZrTiCuNiBe bulk metallic glass composites. Appl. Phys. Lett. 79, 1456 2001CrossRefGoogle Scholar
29Eckert, J., Kühn, U., Mattern, N., He, G., Gebert, A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics 10, 1183 2002CrossRefGoogle Scholar
30Kusy, M., Kühn, U., Concustell, A., Gebert, A., Das, J., Eckert, J., Schultz, L., Baro, M.D.: Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. Intermetallics 14, 982 2006CrossRefGoogle Scholar
31Park, J.M., Kim, Y.C., Kim, W.T., Kim, D.H.: Ti-based bulk metallic glasses with high specific strength. Mater. Trans. 45, 595 2004CrossRefGoogle Scholar
32De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals, (North-Holland, Amsterdam, 1989), p. 291Google Scholar
33Massalski, T.B., Okamoto, H.: Binary Alloy Phase Diagram ASM International Materials Park, OH 1990Google Scholar
34JCPDFWIN Version 2.2, JCPDS, International Center for Diffraction Data: Newton Square, PA, 2001Google Scholar
35Zhang, Z.F., He, G., Eckert, J., Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045504 2003CrossRefGoogle ScholarPubMed