Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T22:25:48.510Z Has data issue: false hasContentIssue false

Enhanced photocatalytic disinfection of microorganisms by transition-metal-ion-modification of nitrogen-doped titanium oxide

Published online by Cambridge University Press:  31 January 2011

Jian Ku Shang*
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, palladium modification and silver modification were used as examples to demonstrate the disinfection effects on microorganisms in aqueous environment of photocatalytic transition-metal-ion-modified nitrogen-doped titanium oxide (TiON/M) materials. Transition metal ion modification was applied to TiON to take advantage of the coupling between transition metal ion addition and TiON semiconductor matrix under visible light illumination. The coupling promotes the separation of electron and hole pairs produced by photon excitation, thus it could reduce the intrinsic charge carrier recombination from anion-doping, which largely limits the photoactivity of TiON under visible light illumination. Large enhancements on the hydroxyl radical production and the photocatalytic disinfection efficiency on microorganisms under visible light illumination were observed for TiON with both palladium and silver modifications. The superior photocatalytic performance under visible light illumination suggests that the transition metal ion modification is an effective approach to reduce the massive charge carrier recombination from anion-doping and to enhance the photocatalytic performance of anion-doped TiO2. The resulting photocatalytic materials have the potential for a wide range of environmental applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rincón, A.G., Pulgarin, C., Adler, N., Peringer, P.Interaction between E. coli inactivation and DBP-precursors–dihydroxybenzene isomers–in the photocatalytic process of drinking-water disinfection with TiO2. J. Photochem. Photobiol., A 139, 233 (2001)CrossRefGoogle Scholar
2.Cooper, W.J., Cadavid, E., Nickelsen, M.G., Lin, K.J., Kurucz, C.N., Waite, T.D.Removing THMs from drinking water using high-energy electron-beam irradiation. J. Am. Water Works Assn. 85, 106 (1993)CrossRefGoogle Scholar
3.Al-Bastaki:, N.M.Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chem. Eng. Process. 43, 935 (2004)CrossRefGoogle Scholar
4.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
5.Frank, N.S., Bard, A.J.Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484 (1977)CrossRefGoogle Scholar
6.Matsunaga, T., Tomoda, T.R., Nakajima, T., Wake, H.Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211 (1985)CrossRefGoogle Scholar
7.Fox, M.A., Dulay, M.T.Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993)CrossRefGoogle Scholar
8.Hoffman, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
9.Hagfeldt, A., Graetzel, M.Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
10.Einaga, H., Futamura, S., Ibusuki, T.Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys. Chem. Chem. Phys. 1, 4903 (1999)CrossRefGoogle Scholar
11.Fujishima, A., Rao, T.N., Tryk, D.A.Titanium dioxide photocatalysis. J. Photochem. Photobiol., A 1, 1 (2000)CrossRefGoogle Scholar
12.Sokmen, M., Candan, F., Sumer, Z.Disinfection of E. coli by the Ag–TiO2/UV system: Lipidperoxidation. J. Photochem. Photobiol., A 143, 241 (2001)CrossRefGoogle Scholar
13.Dunlop, P.S.M., Byrne, J.A., Manga, N., Eggins, B.R.The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol., A 148, 355 (2002)CrossRefGoogle Scholar
14.Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.C., Huang, Z., Fiest, J., Jacoby, W.A.Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36, 3412 (2002)CrossRefGoogle ScholarPubMed
15.Yu, J.C., Ho, W.K., Lin, J., Yip, K.Y., Wong, P.K.Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296 (2003)CrossRefGoogle ScholarPubMed
16.Sunada, K., Watanabe, T., Hashimoto, K.Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ. Sci. Technol. 37, 4785 (2003)CrossRefGoogle ScholarPubMed
17.Cho, M., Chung, H.M., Choi, W.Y., Yoon, J.Y.Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71, 270 (2005)CrossRefGoogle ScholarPubMed
18.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
19.Irie, H., Watanabe, Y., Hashimoto, K.Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders. J. Phys. Chem. B 107, 5483 (2003)CrossRefGoogle Scholar
20.Lindgren, T., Mwabora, J.M., Avendaño, E., Jonsson, J., Granqvist, C.G., Lindquist, S.E.Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107, 5709 (2003)CrossRefGoogle Scholar
21.Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L.Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003)CrossRefGoogle Scholar
22.Yang, S.W., Gao, L.New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light. J. Am. Ceram. Soc. 87, 1803 (2004)CrossRefGoogle Scholar
23.Torres, G.R., Lindgren, T., Lu, J., Granqvist, C-G., Lindquist, S.E.Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. J. Phys. Chem. B 108, 5995 (2004)CrossRefGoogle Scholar
24.Nakamura, R., Tanaka, T., Nakato, Y.Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 108, 10617 (2004)CrossRefGoogle Scholar
25.Khan, S.U.M., Al-Shahry, M., Ingler, W.B.Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)CrossRefGoogle ScholarPubMed
26.Sakthivel, S., Kisch, H.Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)CrossRefGoogle ScholarPubMed
27.Irie, H., Watanabe, Y., Hashimoto, K.Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003)CrossRefGoogle Scholar
28.Wang, H., Lewis, J.P.Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys. Condens. Matter 17, L209 (2005)CrossRefGoogle Scholar
29.Umebayashi, T., Yamaki, T., Itoh, H., Asai, K.Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002)CrossRefGoogle Scholar
30.Umebayashi, T., Yamaki, T., Tanaka, S., Asai, K.Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003)CrossRefGoogle Scholar
31.Ohno, T., Mitsui, T., Matsumura, M.Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett. 32, 364 (2003)CrossRefGoogle Scholar
32.Yamamoto, T., Yamashita, F., Tanaka, I., Matsubara, F., Muramatsu, A.Electronic states of sulfur doped TiO2 by first-principles calculations. Mater. Trans. 45, 1987 (2004)CrossRefGoogle Scholar
33.Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P., Zhao, J.Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39, 1175 (2005)CrossRefGoogle ScholarPubMed
34.Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T., Zhang, L.Z.Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002)CrossRefGoogle Scholar
35.Ghosh, A.K., Maruska, H.P.Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J. Electrochem. Soc. 124, 1516 (1977)CrossRefGoogle Scholar
36.Choi, W., Termin, A., Hoffmann, M.R.The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
37.Anpo:, M.Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light. Catal. Surv. Jpn. 1, 169 (1997)CrossRefGoogle Scholar
38.Subramanian, V., Wolf, E., Kamat, P.V.Semiconductor-metal composite nanostructures: To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105, 11439 (2001)CrossRefGoogle Scholar
39.Shah, S.I., Li, W., Huang, C-P., Jung, O., Ni, C.Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc. Natl. Acad. Sci. USA 99, 6482 (2002)CrossRefGoogle ScholarPubMed
40.Li, Q., Liang, W., Shang, J.K.Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Appl. Phys. Lett. 90, 063109 (2007)CrossRefGoogle Scholar
41.Li, Q., Xie, R., Mintz, E.A., Shang, J.K.Enhanced visible-light photocatalytic degradation of humic acid by palladium oxide-sensitized nitrogen-doped titanium oxide. J. Am. Ceram. Soc. 90, 3863 (2007)CrossRefGoogle Scholar
42.Li, Q., Page, M.A., Marinãs, B.J., Shang, J.K.Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light. Environ. Sci. Technol. 42, 6148 (2008)CrossRefGoogle ScholarPubMed
43.Li, Q., Li, Y.W., Wu, P., Xie, R., Shang, J.K.Palladium oxide nanoparticles on nitrogen-doped titanium oxide: Accelerated photocatalytic disinfection and post-illumination catalytic “memory.” Adv. Mater. 20, 3717 (2008)CrossRefGoogle Scholar
44.Wu, P., Xie, R., Shang, J.K.Enhanced visible-light photocatalytic disinfection of bacterial spores by palladium-modified nitrogen-doped titanium oxide. J. Am. Ceram. Soc. 91, 2957 (2008)CrossRefGoogle Scholar
45.Daley, M.A., Tandon, D., Economy, J., Hippo, E.J.Elucidating the porous structure of activated carbon fibers using direct and indirect methods. Carbon 34, 1191 (1996)CrossRefGoogle Scholar
46.Tauc, J., Grigorovici, R., Vancu, A.Optical properties and electronic structures of amorphous germanium. Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
47.Schuch, R., Nelson, D., Fischetti, V.A.A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884 (2002)CrossRefGoogle ScholarPubMed
48.Cross, J.B., Currier, R.P., Torraco, D.J., Vanderberg, L.A., Wagner, G.L., Gladen, P.D.Killing of Bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions. Appl. Environ. Microbiol. 69, 2245 (2003)CrossRefGoogle ScholarPubMed