Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:56:26.276Z Has data issue: false hasContentIssue false

Enhanced photocatalytic activity of Eu3+- and Gd3+-doped BiPO4

Published online by Cambridge University Press:  23 October 2013

Hongwei Huang*
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Hongjie Qi
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Ying He
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Na Tian
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Yihe Zhang
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Novel europium- and gadolinium-doped bismuth phosphate (Eu/BiPO4 and Gd/BiPO4) microcrystals have been synthesized by a hydrothermal route. The morphologies and optical properties of the as-prepared samples were characterized carefully. Their photocatalytic activities were determined by oxidative decomposition of methylene blue (MB) in aqueous solution. The results revealed that europium and gadolinium doping greatly improves the photocatalytic efficiency of BiPO4 microcrystals. Among these as-prepared europium and gadolinium dopant samples, 1% Eu/BiPO4 and 5% Gd/BiPO4 displayed the highest photocatalytic activity, and the degradation rates are 2 and 2.7 times greater than pure BiPO4, respectively. The photodegradation reactions of MB by Eu- and Gd-BiPO4 followed first-order kinetics. The different photocatalytic mechanisms of Eu/BiPO4 and Gd/BiPO4 photocatalysts are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, X.C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production. Nat. Mater. 8, 76 (2009).CrossRefGoogle ScholarPubMed
Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M., and Ye, J.H.: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).CrossRefGoogle ScholarPubMed
Kubacka, A., Fernández-García, M., and Colón, G.: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).CrossRefGoogle ScholarPubMed
Akurati, K.K., Vital, A., Dellemann, J.P., Michalow, K., Graule, T., Fetti, D., and Baiker, A.: Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Appl. Catal., B 79, 53 (2008).CrossRefGoogle Scholar
Wang, H.Q., Miyauchi, M., Ishikawa, Y., Pyatenko, A., Koshizaki, N., Li, Y., Li, L., Li, X.Y., Bando, Y., and Golberg, D.: Single-crystalline rutile TiO2 hollow spheres: Room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102 (2011).CrossRefGoogle ScholarPubMed
Feng, N.D., Wang, Q., Zheng, A.M., Zhang, Z.F., Fan, J., Liu, S.B., Amoureux, J.P., and Deng, F.: Understanding the high photocatalytic activity of (B, Ag)-co doped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 135, 1607 (2013).CrossRefGoogle Scholar
Rawal, S.B., Sung, S.D., and Lee, W.I.: Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation. Catal. Commun. 17, 131 (2012).CrossRefGoogle Scholar
Choi, W., Termin, A., and Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
Vamathevan, V., Amal, R., Beydoun, D., Low, G., and McEvoy, S.: Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol., A 148, 233 (2002).CrossRefGoogle Scholar
He, C., Yu, Y., Hu, X.F., and Larbot, A.: Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci. 200, 239 (2002).CrossRefGoogle Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Di Valentin, C., and Pacchioni, G.: Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666 (2006).CrossRefGoogle ScholarPubMed
Feng, N., Zheng, A., Wang, Q., Ren, P., Gao, X., Liu, S.B., Shen, Z., Chen, T., and Deng, F.: Boron environments in b-doped and (B, N)-codoped TiO2 photocatalysts: A combined solid-state NMR and theoretical calculation study. J. Phys. Chem. C 115, 2709 (2011).CrossRefGoogle Scholar
Chen, D.M., Zhu, Q., Lv, Z.J., Deng, X.T., Zhou, F.S., and Deng, Y.X.: Microstructural and photocatatlytic properties of Eu-doped mesporous titanium dioxide nanoparticles by sol-gel method. Mater. Res. Bull. 47, 3129 (2012).CrossRefGoogle Scholar
Tian, Y., Zhang, L.D., and Zhang, J.X.: A superior visible light-driven photocatalyst: Europium-doped bismuth tungstate hierarchical microspheres. J. Alloys Compd. 537, 24 (2012).CrossRefGoogle Scholar
Guo, R.R., Fang, L., Dong, W., Zheng, F.G., and Shen, M.R.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114, 21390 (2010).CrossRefGoogle Scholar
Pan, C.S. and Zhu, Y.F.: New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570 (2010).CrossRefGoogle ScholarPubMed
Zhao, M.L., Li, G.S., Li, L.P., Yang, L.S., and Zheng, J.: Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions. Cryst. Growth Des. 12, 3983 (2012).CrossRefGoogle Scholar
Colon, G., Lopez, S.M., Hidalgo, M.C., and Navio, J.A., Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamineB degradation. Chem. Commun. 46, 4809 (2010).CrossRefGoogle Scholar
Liu, S.W., Yu, J.G., and Jaroniec, M.: Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 23, 4085 (2011).CrossRefGoogle Scholar
Zhao, Y.B., Ma, W.H., Li, Y., Ji, H.W., Chen, C.C., Zhu, H.Y., and Zhao, J.C.: The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem. Int. Ed. 51, 3188 (2012).CrossRefGoogle ScholarPubMed
Xu, A.W., Gao, Y., and Liu, H.Q.: The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207, 151 (2002).CrossRefGoogle Scholar