Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T06:45:58.237Z Has data issue: false hasContentIssue false

Enhanced diffuse phase transition and defect mechanism of Na-doped Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics

Published online by Cambridge University Press:  26 July 2012

Kyu-Mann Lee
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The diffuse phase transition (DPT) characteristics and the associated defect mechanism of Na-doped Pb(Mg1/3Nb2/3)O3 (PMN) relaxor perovskite were studied. The enhanced DPT and the decrease in the intensity of the superlattice reflection were observed in the presence of Na2O. These contradictory observations were interpreted in terms of the inhibition of the growth of the 1 : 1 nonstoichiometric short-range ordered domains and the increase in the microcompositional fluctuation of the B-site cations caused by the formation of negatively charged Na′Mg sites. The mechanism of the associated defect process was then elucidated by analyzing the electrical conductivity as a function of the oxygen partial pressure. It was shown that the substitution of Na+ ions for Mg2+ ions in the B-site sublattice of perovskite PMN produced the negatively charged sites with a concomitant generation of oxygen vacancies () for the ionic compensation. This expedites the enhancement of the compositional inhomogeneities of the B-site cations and suppresses the growth of the nonstoichiometrically ordered nanodomains in a disordered matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smolenskii, G. A., J. Phys. Soc. Jpn. 28 (suppl.), 26 (1970).Google Scholar
2.Cross, L. E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
3.Shrout, T. R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
4.Nomura, S. and Uchino, K., Ferroelectrics 50, 197 (1983).Google Scholar
5.Uchino, K., Am. Ceram. Soc. Bull. 65, 647 (1986).Google Scholar
6.Wheeler, C. E. and Pazol, B. G., Am. Ceram. Soc. Bull. 70, 117 (1991).Google Scholar
7.Uchino, K., Nomura, S., Cross, L. E., Newnham, R. E., and Jang, S. J., J. Mater. Sci. 16, 569 (1981).CrossRefGoogle Scholar
8.Uchino, K., Tsuchiya, Y., Nomura, S., Sato, T., Ishikawa, H., and Ikeda, O., Appl. Opt. 20, 3077 (1981).Google Scholar
9.Uchino, K., Kuwata, J., Nomura, S., Cross, L. E., and Newnham, R. E., Jpn. J. Appl. Phys. 20, (supp. 20–4), 171 (1981).Google Scholar
10.Kudo, N. Y. and Ono, T., Jpn. J. Appl. Phys. 31, 3081 (1992).CrossRefGoogle Scholar
11.Nomura, S. and Uchino, K., Ferroelectrics 41, 117 (1982).Google Scholar
12.Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smyth, D. M., Ferroelectrics 97, 263 (1989).Google Scholar
13.Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).Google Scholar
14.Groves, P., J. Phys. C: Solid State Phys. 19, 118 (1986).Google Scholar
15.Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72, 593 (1989).Google Scholar
16.Wu, Z., Gui, Z., Li, L., and Zhang, X., J. Appl. Phys. 72, 5822 (1992).Google Scholar
17.Viehland, D. and Li, J-F., J. Appl. Phys. 74, 4121 (1993).CrossRefGoogle Scholar
18.Swartz, S. L. and Shrout, T. R., Mater Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
19.Jang, H. M., Lee, K-M., and Lee, M-H., J. Mater. Res. 9, 2634 (1994).Google Scholar
20.Izumi, F., J. Cryst. Soc. Jpn. 27, 23 (1985).CrossRefGoogle Scholar
21.Smolenskii, G. M., Proc. 2nd Int. Meet. Ferroelectr. (IMF–2), 1969 (1970), p. 26.Google Scholar
22.Rolov, B. N.,Sov. Phys.-Solid State (Engl. Transl.) 6, 1676 (1965).Google Scholar
23.Pilgrim, S. M., Sutherland, A. E., and Winzer, S. R., J. Am. Ceram. Soc. 73, 3122 (1990).Google Scholar
24.Wang, H-C. and Schultz, W. A., J. Am. Ceram. Soc. 73, 825 (1990).Google Scholar
25.Hilton, A. D., Barber, D. J., Randall, C. A., and Shrout, T. R., J. Mater. Sci. 25, 3461 (1990).Google Scholar
26.Macdonald, J. R., Impedance Spectroscopy (John Wiley & Sons, New York, 1987), Chap. 4.Google Scholar
27.Dudek, J., and Wróbel, Z., Ferroelectrics 18, 161 (1978).CrossRefGoogle Scholar
28.Izumi, F., Mitomo, M., and Bando, Y., J. Mater. Sci. 19, 3115 (1984).Google Scholar
29.Young, R. A. and Wiles, D. B., J. Appl. Crystallogr. 15, 430 (1982).Google Scholar
30.Moulson, A. J. and Herbert, J. M., Electroceramics (Chapman and Hall), Chap. 2.Google Scholar