Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:14:41.821Z Has data issue: false hasContentIssue false

Energetics and electronic structure of point defects associated with oxygen excess at a tilt boundary of ZnO

Published online by Cambridge University Press:  31 January 2011

Fumiyasu Oba
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606–8501, Japan
Hirohiko Adachi
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606–8501, Japan
Isao Tanaka
Affiliation:
Department of Energy Science and Technology, Kyoto University, Sakyo, Kyoto 606–8501, Japan
Get access

Abstract

The formation energies and electronic structure of zinc vacancies and oxygen interstitials at a tilt boundary of ZnO were investigated by a combination of static lattice and first-principles molecular orbital methods. For both of the defect species, the formation energies were lower than those of the bulk defects at certain sites in the grain boundary. The defects with low formation energies formed electronic states close to the top of the valence band. The interfacial electronic states observed experimentally in ZnO varistors cannot be explained solely by the point defects associated with the oxygen excess: the effects of impurities should be significant for the states.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clarke, D.R., J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
2. Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
3. Mukae, K., Tsuda, K., and Nagasawa, I., Jpn. J. Appl. Phys. 16, 1361 (1977).CrossRefGoogle Scholar
4. Pike, G.E. and Seager, C.H., J. Appl. Phys. 50, 3414 (1979).CrossRefGoogle Scholar
5. Pike, G.E., Kurtz, S.R., Gourley, P.L., Philipp, H.R., and Levinson, L.M., J. Appl. Phys. 57, 5512 (1985).CrossRefGoogle Scholar
6. Blatter, G. and Greuter, F., Phys. Rev. B 34, 8555 (1986).CrossRefGoogle Scholar
7. Mukae, K., Key Eng. Mater. 125/126, 317 (1997).Google Scholar
8. Gambino, J.P., Kingery, W.D., Pike, G.E., Philipp, H.R., and Levinson, L.M., J. Appl. Phys. 61, 2571 (1987).CrossRefGoogle Scholar
9. Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn. 97, 1211 (1989).CrossRefGoogle Scholar
10. Hayashi, M., Kuramoto, M. and Hayashi, M., in Advances in Varistor Technology, edited by Levinson, L.M. (American Ceramic Society, Westerville, OH, 1989), p. 364.Google Scholar
11. Maeda, T., Meguro, S., and Takata, M., Jpn. J. Appl. Phys. 28, L714 (1989).CrossRefGoogle Scholar
12. Winston, R.A. and Cordaro, J.F., J. Appl. Phys 68, 6495 (1990).CrossRefGoogle Scholar
13. Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn. 100, 1239 (1992).CrossRefGoogle Scholar
14. Oba, F., Tanaka, I., Nishitani, S.R., Adachi, H., Slater, B., and Gay, D.H., Philos. Mag. A 80, 1567 (2000).CrossRefGoogle Scholar
15. Brandon, D.G., Ralph, B., Ranganathan, S., and Wald, M.S., Acta Metall. 12, 813 (1964).CrossRefGoogle Scholar
16. Mo, S.D., Ching, W.Y., and French, R.H., J. Am. Ceram. Soc. 79, 627 (1996).CrossRefGoogle Scholar
17. Dawson, I., Bristowe, P.D., Lee, M.H., Payne, M.C., Segall, M.D., and White, J.A., Phys. Rev. B 54, 13727 (1996).CrossRefGoogle Scholar
18. Greuter, F., Blatter, G., Rossinelli, M., and Schmückle, F., Mater. Sci. Forum 10–12, 235 (1986).CrossRefGoogle Scholar
19. Greuter, F., Blatter, G., Rossinelli, M., and Stucki, F., in Advances in Varistor Technology, edited by Levinson, L.M. (American Ceramic Society, Westerville, OH, 1989), p. 31.Google Scholar
20. Sonder, E., Austin, M.M., and Kinser, D.L., J. Appl. Phys. 54, 3566 (1983).CrossRefGoogle Scholar
21. Fujitsu, S., Toyoda, H., and Yanagida, H., J. Am. Ceram. Soc. 70, C71 (1987).CrossRefGoogle Scholar
22. Stucki, F., Brüesch, P., and Greuter, F., Surf. Sci. 189/190, 294 (1987).CrossRefGoogle Scholar
23. Stucki, F. and Greuter, F., Appl. Phys. Lett. 57, 446 (1990).CrossRefGoogle Scholar
24. Kröger, F.A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, The Netherlands, 1974), Vol. 2, p. 743.Google Scholar
25. Hagemark, K.I. and Chacka, L.C., J. Solid State Chem. 15, 261 (1975).CrossRefGoogle Scholar
26. Sukkar, M.H. and Tuller, H.L., in Advances in Ceramics, edited by Yan, M.F. and Heuer, A.H. (American Ceramic Society, Columbus, OH, 1983), Vol. 7, p. 71.Google Scholar
27. Simpson, J.C. and Cordaro, J.F., J. Appl. Phys. 67, 6760 (1990).CrossRefGoogle Scholar
28. Yano, Y., Shirakawa, Y., and Morooka, H., Jpn. J. Appl. Phys. 31, L1429 (1992).CrossRefGoogle Scholar
29. Yano, Y., Takai, Y., and Morooka, H., J. Mater. Res. 9, 112 (1994).CrossRefGoogle Scholar
30. Fujitsu, S., Koumoto, K., and Yanagida, H., Solid State Ionics 32/33, 482 (1989).CrossRefGoogle Scholar
31. Yodogawa, M., Ikuhara, Y., Oba, F., and Tanaka, I., Key Eng. Mater. 157–158, 24 (1999).Google Scholar
32. Oba, F., Tanaka, I., and Adachi, H., Jpn. J. Appl. Phys. 38, 3569 (1999).CrossRefGoogle Scholar
33. Merkle, K.L. and Smith, D.J., Phys. Rev. Lett. 59, 2887 (1987).CrossRefGoogle Scholar
34. Merkle, K.L., Reddy, J.F., Wiley, C.L., and Smith, D.J., J. Phys. 49, C5251 (1988).Google Scholar
35. Höche, T., Kenway, P.R., Kleebe, H.-J., Rühle, M., and Morris, P.A., J. Am. Ceram. Soc. 77, 339 (1994).CrossRefGoogle Scholar
36. Kiselev, A.N., Sarrazit, F., Stepantsov, E.A., Olsson, E., Claeson, T., Bondarenko, V.I., Pond, R.C., and Kiselev, N.A., Philos Mag. A 76, 633 (1997).Google Scholar
37. Duffy, D.M. and Tasker, P.W., Philos. Mag. A. 47, 817 (1983).CrossRefGoogle Scholar
38. Duffy, D.M. and Tasker, P.W., Philos. Mag. A. 48, 155 (1983).CrossRefGoogle Scholar
39. Tasker, P.W. and Duffy, D.M., Philos. Mag. A. 47, L45 (1983).Google Scholar
40. Meyer, M. and Waldburger, C., Mater. Sci. Forum 126–128, 229 (1993).CrossRefGoogle Scholar
41. Kenway, P.R., J. Am. Ceram. Soc. 77, 349 (1994).CrossRefGoogle Scholar
42. Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials (Oxford University Press, New York, 1995), p. 318.Google Scholar
43. Wunderlich, W., Phys. Stat. Solidi (a) 170, 99 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
44. Gale, J.D., J. Chem. Soc., Faraday Trans. 93, 629 (1997).CrossRefGoogle Scholar
45. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1992), p. 418.Google Scholar
46. Lewis, G.V. and Catlow, C.R.A, J. Phys. C: Solid State Phys. 18, 1149 (1985).CrossRefGoogle Scholar
47. Abrahams, S.C. and Bernstein, J.L., Acta Crystallogr., Sect. B 25, 1233 (1969).CrossRefGoogle Scholar
48. Bateman, T.B., J. Appl. Phys. 33, 3309 (1962).CrossRefGoogle Scholar
49. Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K., and Pasternak, M.P., Phys. Rev. B 53, 11425 (1996).CrossRefGoogle Scholar
50. Mott, N.F. and Littleton, M.J., Trans. Faraday Soc. 34, 485 (1938).CrossRefGoogle Scholar
51. Catlow, C.R.A, James, R., Mackrodt, W.C., and Stewart, R.F., Phys. Rev. B 25, 1006 (1982).CrossRefGoogle Scholar
52. Rohatgi, A., Pang, S.K., Gupta, T.K., and Straub, W.D., J. Appl. Phys. 63, 5375 (1988).CrossRefGoogle Scholar
53. Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).CrossRefGoogle Scholar
54. Neugebauer, Jörg and Van de Walle, C.G., Phys. Rev. B 50, 8067 (1994).CrossRefGoogle Scholar
55. Orellana, W. and Chacham, H., Appl. Phys. Lett. 74, 2984 (1999).CrossRefGoogle Scholar
56. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
57. Laks, D.B., Van de Walle, C.G., Neumark, G.F., Blöchl, P.E., and Pantelides, S.T., Phys. Rev. B 45, 10965 (1992).CrossRefGoogle Scholar
58. Ellis, D.E., Adachi, H., and Averill, F.W., Surf. Sci. 58, 497 (1976).CrossRefGoogle Scholar
59. Adachi, H., Tsukada, M., and Satoko, C., J. Phys. Soc. Jpn. 45, 875 (1978).Google Scholar
60. Mulliken, R.S., J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
61. Schröer, P., Krüger, P., and Pollmann, J., Phys. Rev. B 47, 6971 (1993).CrossRefGoogle Scholar
62. Xu, Y.N. and Ching, W.Y., Phys. Rev. B 48, 4335 (1993).CrossRefGoogle Scholar
63. Srikant, V. and Clarke, D.R., J. Appl. Phys. 83, 5447 (1998).CrossRefGoogle Scholar
64. Sukkar, M.H., Johnson, K.H., and Tuller, H.L., Mater. Sci. Eng. B 6, 49 (1990).CrossRefGoogle Scholar