Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T10:11:18.025Z Has data issue: false hasContentIssue false

Emission and absorption cross section spectra of Er3+ in LiNbO3 crystals codoped with indium

Published online by Cambridge University Press:  27 April 2011

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information and Technology (Tianjin University), Ministry of Education, Tianjin, 300072, People’s Republic of China
Li Qi
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information and Technology (Tianjin University), Ministry of Education, Tianjin, 300072, People’s Republic of China
Ping-Rang Hua
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information and Technology (Tianjin University), Ministry of Education, Tianjin, 300072, People’s Republic of China
Dao-Yin Yu
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information and Technology (Tianjin University), Ministry of Education, Tianjin, 300072, People’s Republic of China
Juan-Antonio Vallés
Affiliation:
Department of Applied Physics-I3A, Universidad de Zaragoza, 50009 Zaragoza, Spain
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have measured at room temperature polarized visible and near-infrared and unpolarized mid-infrared (2.7 μm) emission spectra of Er3+ in LiNbO3 (LN) crystals grown from congruent melts doped with 0.0/0.5, 0.5/0.5, and 1.0/0.5 mol%/mol% In2O3/Er2O3. From the measured emission spectra, the emission and absorption cross section spectral distributions were analyzed based on McCumber theory and discussed in comparison with those spectra of only Er-doped LN bulk material and/or Ti: Er: LN waveguide structure and with the results from the unpolarized absorption measurements. For the 530 and 1530 nm transitions, the cross section value, polarization dependence, and spectral shape all change from the only Er-doped material to the In–Er-codoped crystal and show definite In2O3 doping level effect. The 559, 673, 996, and 1530 nm emission lifetimes were also measured and used to evaluate nonradiative multiphonon relaxation rate. The calculated radiative, measured lifetimes, and multiphonon relaxation rate also show In-codoping effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., and Suche, H.: Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991).CrossRefGoogle Scholar
2.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., and Pihl, T.: Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition. Electron. Lett. 27, 913 (1991).CrossRefGoogle Scholar
3.Amin, J., Aust, J.A., and Sanford, N.A.: Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996).CrossRefGoogle Scholar
4.Das, B.K., Ricken, R., and Sohler, W.: Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 83, 1515 (2003).CrossRefGoogle Scholar
5.Das, B.K., Ricken, R., Quiring, V., Suche, H., and Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165 (2004).CrossRefGoogle ScholarPubMed
6.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996).CrossRefGoogle Scholar
7.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., and Sciancalepore, D.: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000).CrossRefGoogle Scholar
8.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., and Sohler, W.: Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides. Proceedings of SPIE-The International Society for Optical Engineering. 4277, 144 (2001).Google Scholar
9.Cantelar, E., Torchia, G.A., Sanz-Garcia, J.A., Pernas, P.L., Lifante, G., and Cussó, F.: Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003).CrossRefGoogle Scholar
10.Bryan, D.A., Gerson, R., and Tomaschke, H.E.: Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847 (1984).CrossRefGoogle Scholar
11.Volk, T.R. and Rubinina, N.M.: A new optical damage resistant impurity in lithium niobate crystals: Indium. Ferroelectrics Letters Section 14, 37 (1992).Google Scholar
12.Kasemir, K., Betzler, K., Matzas, B., Tiegel, B., Wahlbrink, T., Wöhlecke, M., Gather, B., Rubinina, N., and Volk, T.: Influence of Zn/In codoping on the optical properties of lithium niobate. J. Appl. Phys. 84, 5191 (1998).CrossRefGoogle Scholar
13.Kasemir, K., Betzler, K., Matzas, B., Tiegel, B., Wöhlecke, M., Rubinina, N., and Volk, T.: Influence of In doping on the refractive indices of lithium niobate. Phys. Status Solidi A 166, R7 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
14.Zhen, X.H., Xu, W.S., Li, Q., and Xu, Y.H.: Growth and optical properties of In: Er: LiNbO3crystals. J. Cryst. Growth 271, 469 (2004).CrossRefGoogle Scholar
15.Sun, L., Yang, C.H., Li, A.H., Xu, Y.H., and Zhao, L.C.: In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission. J. Appl. Phys. 105, 043512 (2009).CrossRefGoogle Scholar
16.Zhang, D.L., Qi, Li, Hua, P.R., and Pun, E.Y.B.: J. Amer. Ceram. Soc., 94, 5 (In press) DOI: 10.1111/j.1551-2916.2010.04255.x.Google Scholar
17.Huang, C.H., McCaughan, L., and Gill, D.M.: Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers. J. Lightwave Technol. 12, 803 (1994).Google Scholar
18.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron 2, 367 (1996).CrossRefGoogle Scholar
19.Pernas, P.L. and Cantelar, E.: Emission and absorption cross-section calculation of rare earth doped materials for applications to integrated optic devices. Phys. Scr. T 118, 93 (2005).Google Scholar
20.Dinand, M. and Sohler, W.: Theoretical modeling of optical amplification in Er-doped Ti:LiNbO3 waveguides. IEEE J. Quantum Electron. 30, 1267 (1994).Google Scholar
21.Veasey, D.L., Gary, J.M., Amin, J., and Aust, J.A.: Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm. IEEE J. Quantum Electron. 33, 1647 (1997).CrossRefGoogle Scholar
22.Lazaro, J.A., Valles, J.A., and Rebolledo, M.A.: Determination of emission and absorption cross sections of Er3+ in Ti:LiNbO3 waveguides from transversal fluorescence spectra. Pure Appl. Opt. 7, 1363 (1998).Google Scholar
23.Lázaro, J.A., Vallés, J.A., and Rebolledo, M.A.: In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states. IEEE J. Quantum Electron. 35, 827 (1999).CrossRefGoogle Scholar
24.Lázaro, J.A., Rebolledo, M.A., and Vallés, J.A.: Modeling, characterization, and experimental/numerical comparison of signal and fluorescence amplification in Ti:Er:LiNbO3 waveguides. IEEE J. Quantum Electron. 37, 1460 (2001).Google Scholar
25.Rebolledo, M.A., Vallés, J.A., and Setién, S.: In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides. J. Opt. Soc. Am. B 19, 1516 (2002).Google Scholar
26.Miyashita, T. and Manabe, T.: Infrared optical fibers. IEEE J. Quantum Electron. 18, 1432 (1982).CrossRefGoogle Scholar
27.Hinkley, F.D., Nill, K.W., and Blum, F.A.: Infrared spectroscopy with tunable lasers, in Laser Spectroscopy of Atoms and Molecules. Topics in Applied Physics, vol. 2. Edited by Walther, H. (Springer-Verlag, Berlin, 1976), p. 127.Google Scholar
28.Petrov, K.P., Curl, R.F., and Tittel, F.K.: Compact laser difference-frequency spectrometer for multicomponent trace gas detection. Appl. Phys. B 66, 531 (1998).CrossRefGoogle Scholar
29.Miniscalco, W.J. and Quimby, R.S.: General procedure for the analysis of Er3+ cross sections. Opt. Lett. 16, 258 (1991).Google Scholar
30.Martin, R.M. and Quimby, R.S.: Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses. J. Opt. Soc. Am. B 23, 1770 (2006).Google Scholar
31.McCumber, D.E.: Theory of phonon-terminated optical masers. Phys. Rev. 134, A299 (1964).Google Scholar
32.Sandoe, J.N., Sarkies, P.H., and Parke, S.: Variation of Er3+ cross section for stimulated emission with glass composition. J. Phys. D 5, 1788 (1972).Google Scholar
33.Moulton, P.F.: Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125 (1986).CrossRefGoogle Scholar
34.Eggleston, J.M., DeShazer, L.G., and Kangas, K.W.: Characteristics and kinetics of laser-pumped Ti: Sapphire oscillators. IEEE J. Quantum Electron. 24, 1009 (1988).CrossRefGoogle Scholar
35.Amin, J., Dussardier, B., Schweizer, T., and Hempstead, M.: Spectroscopic analysis of Er3+ transitions in lithium niobate. J. Lumin. 69, 17 (1996).Google Scholar
36.Núñez, L., Lifante, G., and Cussó, F.: Polarization effects on line- strength calculations of Er3+-doped LiNbO3. Appl. Phys. B. 62, 485 (1996).Google Scholar
37.Muňoz, J.A., Herreros, B., Lifante, G., and Cussó, F.: Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping. Phys. Status Solidi A 168, 525 (1998).Google Scholar
38.Cantelar, E., Di Paolo, R.E., Cussó, F., Nevado, R., Lifante, G., Sohler, W., and Suche, H.: Spectroscopy of Er in Zn-diffused LiNbO3 waveguides. J. Alloy. Comp. 323-4, 348 (2001).Google Scholar
39.Cantelar, E., Nevado, R., Martín, G., Sanz-García, J.A., Lifante, G., Cussó, F., Hernández, M.J., and Pernas, P.L.: Optical properties of Er and Yb co-doped lithium niobate waveguides. J. Lumin. 87-89, 1096 (2000).Google Scholar