Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:10:09.220Z Has data issue: false hasContentIssue false

Emanation thermal analysis in the characterization of zinc sulfide thin films prepared from different precursors

Published online by Cambridge University Press:  03 March 2011

V. Balek
Affiliation:
Nuclear Research Institute, CS-250 68 Řež, Czech Republic
J. Fusek
Affiliation:
Nuclear Research Institute, CS-250 68 Řež, Czech Republic
O. Kříž
Affiliation:
Nuclear Research Institute, CS-250 68 Řež, Czech Republic
M. Leskelä
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland
L. Niinistö*
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland
E. Nykänen
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland
J. Rautanen
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland
P. Soininen
Affiliation:
Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Zinc sulfide thin films were prepared by the Atomic Layer Epitaxy (ALE) process from zinc acetate and zinc chloride and studied by emanation thermal analysis (ETA). The effects of different precursors and growth temperatures were evident in the ETA curves. In the films grown from zinc acetate, thermally induced changes were detected below 95 °C and above 400 °C which can plausibly be attributed to a higher amount of volatiles and to a polymorphic transition, respectively. The cubic to hexagonal transition was confirmed by DSC. Doping with terbium distorts the crystal structure and causes the peaks to become poorly discernible.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Permanent address: Department of Chemistry, University of Helsinki, P.O. Box 6, FIN-00014 Helsinki, Finland.

References

REFERENCES

1Leskelä, M., Leskelä, T., and Niinistö, L., J. Therm. Anal. 40, 10771088 (1993).Google Scholar
2Balek, V., Thermochim. Acta 192, 117 (1991).Google Scholar
3Balek, V. and Tölgyessy, J., Emanation Thermal Analysis and Other Radiometric Emanation Methods (Akadémiai Kiadó, Budapest, and Elsevier, Amsterdam, 1984).Google Scholar
4Goede, W. F., Status of Electronic Displays (SID Seminar Lecture Notes, Anaheim, CA, 1991), Vol. 1, p. M-01–34.Google Scholar
5Leskelä, M. and Niinistö, L., Mater. Chem. Phys. 31, 711 (1992).Google Scholar
6Tammenmaa, M., Leskelä, M., Koskinen, T., and Niinistö, L., J. Less-Comm. Met. 126, 209214 (1986).CrossRefGoogle Scholar
7Oikkonen, M., Acta Polytechn. Scand. Appl. Phys. Ser. Ph. 161, 146 (1988), and references therein.Google Scholar
8Wells, A. F., Structural Inorganic Chemistry, 4th ed. (Clarendon Press, Oxford, 1975), p. 606.Google Scholar
9Atomic Layer Epitaxy, edited by Suntola, T. and Simpson, M. (Blackie, Glasgow and London, 1990)CrossRefGoogle Scholar
10Hiltunen, L., Leskelä, M., Mäkelä, M., and Niinistö, L., Acta Chem. Scand., Ser. A 41, 548555 (1987).Google Scholar
11Oikkonen, M., Tammenmaa, M., and Asplund, M., Mater. Res. Bull. 23, 133142 (1988).CrossRefGoogle Scholar
12Oikkonen, M., Tuomi, T., and Luomajärvi, M., Appl. Phys. Lett. 63, 10701074 (1988).Google Scholar
13Antson, H., Grasserbauer, M., Hamilo, M., Koskinen, T., Leskelä, M., Niinistö, L., Stingeder, G., and Tammenmaa, M., Fresenius' Z. Anal. Chem. 322, 175180 (1985).CrossRefGoogle Scholar
14Lahtinen, J. A., Lu, A., Tuomi, T., and Tammenmaa, M., J. Appl. Phys. 58, 18511853 (1985).CrossRefGoogle Scholar
15Gardner, P. J. and Pang, P., J. Chem. Soc, Faraday Trans. 1 84, 18791887 (1988).Google Scholar
16Mills, K. C., Thermodynamic Data for Inorganic Sulphides, Se- lenides and Tellurides (Butterworths, London, 1974).Google Scholar
17Balek, V. and Gallagher, P. K., Thermochim. Acta 186, 6368 (1991).Google Scholar