Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:56:51.605Z Has data issue: false hasContentIssue false

Elevated temperature properties of Mg–14Li–B particulate composites

Published online by Cambridge University Press:  31 January 2011

J. Wolfenstine
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
G. González-Doncel
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
O. D. Sherby
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

The creep behavior of Mg–14Li particulate composites containing 0,10,20, and 30 vol. % boron particles was evaluated from 230 to 280°C. The results reveal that the creep strength of the particulate composite is increased by a factor of eight over the Mg–14Li matrix with the addition of 30 vol. % boron. The body-centered cubic (bcc) Mg–14Li alloy is shown, however, to be much weaker than hexagonal close-packed (hep) pure magnesium. This difference is attributed to the high rate of atom mobility in the open structure of the Mg–14Li bcc alloy. It is predicted that a Mg–6Li–30B particulate composite, containing an hep matrix structure, will have a higher specific strength at 250°C than the new experimental aluminum base–high iron alloys prepared by rapid solidification processing.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Whalen, R.T., González-Doncel, G., Robinson, S. L., and Sherby, O.D., Scripta Metall. 23, 137 (1989).CrossRefGoogle Scholar
2Yaney, D. L. and Nix, W. D., Metall. Trans. A 18A, 893 (1987).CrossRefGoogle Scholar
3Murty, G. S. and Koczak, M. J., J. Mater. Sci. 24, 510 (1989).CrossRefGoogle Scholar
4Walser, B. and Sherby, O.D., Metall. Trans. A 10A, 1461 (1979).CrossRefGoogle Scholar
5Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1967).Google Scholar
6Mukherjee, A. K., Bird, J. E., and Dora, J. E., Trans. ASM 62, 155 (1969).Google Scholar
7Ashby, M. F. and Frost, H. J., in Constitutive Equations in Plasticity, edited by Argon, A. J. (MIT, Cambridge, MA, 1975), p. 117.Google Scholar
8Mohamed, F. A. and Langdon, T. G., Metall. Trans. 5, 2339 (1974).CrossRefGoogle Scholar
9Lin, J. and Sherby, O. D., Res Mechanica 2, 251 (1981).Google Scholar
10Artz, E. and Wilkinson, D. S., Acta Metall. 34, 1893 (1986).Google Scholar
11Shewfelt, R. S. W. and Brown, L. M., Phil. Mag. 35, 945 (1977).CrossRefGoogle Scholar
12McLean, M., Acta Metall. 33, 545 (1985).CrossRefGoogle Scholar
13Nachtrieb, N.H., Catalano, E., and Weil, J. A., J. Chem. Phys. 20, 1185 (1952).CrossRefGoogle Scholar
14Slichter, C. P., Rep. Conf. on Defects in Crystalline Solids (Physical Society, London, 1955), p. 52.Google Scholar
15Sherby, O. D.and Simnad, M.T., Trans. ASM 54, 227 (1961).Google Scholar
16Malu, M. and Tien, J. K., Acta Metall. 22, 251 (1974).CrossRefGoogle Scholar
17Meyers, C. C., Shyne, J. C., and Sherby, O. D., J. Australian Inst. Met. 8, 171 (1963).Google Scholar
18Cadek, J., in Creep in Metallic Materials (Elsevier, New York, 1989), p. 59.Google Scholar
19Milicka, K., Cadek, J., and P. Rys, Acta Metall. 18, 1071 (1970).CrossRefGoogle Scholar
20Shewmon, P. G., Trans. AIME 206, 918 (1956).Google Scholar
21Hauser, F. E., Landon, P. R., and Dorn, J. E., Trans. ASM 50, 856 (1958).Google Scholar
22Drits, M.E., Sviderskaya, Z.A., and rokhova, V. F., Tsvetnye Met. 7, 90 (1966).Google Scholar