Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T01:42:54.076Z Has data issue: false hasContentIssue false

Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray atomization and co-deposition

Published online by Cambridge University Press:  03 March 2011

Don Baskin
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, California 92717-3975
Jeff Wolfenstine
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, California 92717-3975
Enrique J. Lavernia
Affiliation:
Materials Section, Department of Mechanical and Aerospace Engineering, University of California-Irvine, Irvine, California 92717-3975
Get access

Abstract

Monolithic CoSi and TiB2 reinforced CoSi materials were produced by spray atomization and co-deposition. The creep behavior of both materials at elevated temperature was investigated. The unreinforced material of grain size ≍25 μm exhibited a stress exponent of three, activation energy for creep of 320 kJ/mole, dislocation substructure of homogeneously distributed dislocations, and inverse creep transients upon stress increases. These results suggest that the creep behavior of CoSi is controlled by a dislocation glide mechanism. In contrast, the reinforced material of a finer grain size (≍10 μm) exhibited a stress exponent of unity, activation energy for creep of 240 kJ/mole, and negligible creep transients upon stress increases, suggesting that the creep behavior of the reinforced material is controlled by a diffusional creep mechanism. The creep resistance of the reinforced material was lower than that for the unreinforced material. This is a result of the finer grain size and higher porosity in the reinforced material.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Meschter, P.J., Scripta Metall. Mater. 25, 1065 (1991).CrossRefGoogle Scholar
2.Yang, J. M., Kai, W., and Jeng, S. M., Scripta Metall. Mater. 24, 1953 (1989).CrossRefGoogle Scholar
3.Henager, C. H. Jr., Brimhall, J. L., and Hirth, J. P., Scripta Metall. 26, 585 (1992).CrossRefGoogle Scholar
4.Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68 (8), C200 (1985).CrossRefGoogle Scholar
5.Aiken, R. M. Jr., Ceram. Eng. Sci. Proc. 12 (9-10), 1643 (1991).CrossRefGoogle Scholar
6.Sadananda, K., Jones, H., Feng, J., Petrovic, J. J., and Vasudevan, A. K., Ceram. Eng. Sci. Proc. 12 (9-10), 1671 (1991).CrossRefGoogle Scholar
7.Wiederhorn, S. M., Gettings, R. J., Roberts, D. E., Ostertag, C., and Petrovic, J. J., Mater. Sci. Eng. A 155, 209 (1992).CrossRefGoogle Scholar
8.Sadananda, K., Feng, C. R., Jones, H., and Petrovic, J. J., Mater. Sci. Eng. A 155, 227 (1992).CrossRefGoogle Scholar
9.Liang, X., Earthman, J. C., Lavernia, E. J., Acta Metall. Mater. 40, 11 (1992).CrossRefGoogle Scholar
10.Bewlay, B.P. and Cantor, B., J. Mater. Res. 6, 1433 (1991).CrossRefGoogle Scholar
11.Machler, R., Uggowitzet, P.J., Solenthaler, C., Pedrazzoli, R.M., and Speidel, H. O., Mater. Sci. Technol. 7, 447 (1991).CrossRefGoogle Scholar
12.Baram, J., Metall. Trans. 22A, 2515 (1991).CrossRefGoogle Scholar
13.Gupta, M., Mohamed, F. A., and Lavernia, E. J., Metall. Trans. 23A, 831 (1992).CrossRefGoogle Scholar
14.Haviprasad, S., Sastry, S.M.L., Jernia, K. L., and Lederich, R. J., Metall. Trans. 24A, 865 (1993).CrossRefGoogle Scholar
15.Singh, R. P., Lawley, A., Freidman, S., and Murty, Y. V., Mater. Sci. Eng. A 145, 243 (1991).CrossRefGoogle Scholar
16.Lengsfeld, P. and Lavernia, E. J., current research, University of California, Irvine.Google Scholar
17.Lavernia, E. J., Gutierrez, E., and Baram, J., Mater. Sci. Eng. A 132, 119 (1991).CrossRefGoogle Scholar
18.Lavernia, E. J., Gomez, E., and Grant, N. J., Mater. Sci. Eng. 95, 251 (1987).CrossRefGoogle Scholar
19.Annavarapu, S., Apelian, D., and Lawley, A., Metall. Trans. 19A, 3077 (1988).CrossRefGoogle Scholar
20.Ucock, I., Ando, T., and Grant, N. J., Mater. Sci. Eng. A 145, 284 (1991).CrossRefGoogle Scholar
21.Ikawa, Y., Itami, T., Kumagai, K., Kawashima, Y., Leatham, A. G., Coombs, J.S., and Brooks, R.J., J. Iron Steel Inst. Jpn. 30 (9z), 756 (1990).CrossRefGoogle Scholar
22.Annavarapu, S., Apelian, D., and Lawley, A., Metall. Trans. 21A, 3237 (1990).CrossRefGoogle Scholar
23.Moran, A.L. and Palko, W.A., J. Metals 40 (12), 12 (1988).Google Scholar
24.Morris, D.G. and Morris, M.A., J. Mater. Res. 6, 361 (1991).CrossRefGoogle Scholar
25.Liang, X., Earthman, J. C., and Lavernia, E. J., Mater. Sci. Eng. A 153, 646 (1992).CrossRefGoogle Scholar
26.Vetter, R., Zhuang, L. Z., Majewska-Glabus, I., and Duszczyk, J., Scripta Metall. Mater. 24, 2025 (1990).CrossRefGoogle Scholar
27.Lavernia, E. J., Ayers, J. A., and Srivatsan, T. S., Int. Mater. Rev. 37, 1 (1992).CrossRefGoogle Scholar
28.Gupta, M., Mohamed, F. A., and Lavernia, E. J., Mater. Sci. Eng. A 144, 99 (1991).CrossRefGoogle Scholar
29.Gupta, M., Juarez-Islas, J., Frazier, W. E., Mohamed, F. A., and Lavernia, E. J., Metall. Trans. 23B, 719 (1992).CrossRefGoogle Scholar
30.Lavernia, E. J., Int. J. Rapid Solid. 5, 47 (1989).Google Scholar
31.Llorca, J., Martin, A., Ruiz, J., and Elices, M., Metall. Trans. 24A, 1575 (1993).CrossRefGoogle Scholar
32.Willis, T. C., Metals Mater. 4 (8), 485 (1988).Google Scholar
33.Singer, A.R.E., Met. Powder Rep. 3, 223 (1986).Google Scholar
34.White, J., Palmer, I. G., Hughes, I. R., and Court, S. A., in Aluminum-Lithium Alloys, edited by Starke, E. A. Jr., (Materials and Component Engineering Publications, Birmingham, U.K., 1989), Vol. 5, p. 1635.Google Scholar
35.Kojima, K. A., Lewis, R. E., and Kaufman, M. J., in Aluminum-Lithium Alloys, edited by Sanders, T. H. Jr., and Starke, E. A. Jr., (Materials and Component Engineering Publications, Birmingham, U.K., 1989), Vol. 1, p. 85.Google Scholar
36.Wu, Y. and Lavernia, E. J., Metall. Trans. 23A, 2923 (1992).CrossRefGoogle Scholar
37.Perez, R., Zhang, J., Gungor, M., and Lavernia, E. J., Metall. Trans. 24A, 701 (1993).CrossRefGoogle Scholar
38.Frommeyer, G., Rosenkranz, R., and Ludecke, C., Z. Metallk. 18, 307 (1991).Google Scholar
39.Vandervoort, R.R., Mukherjee, A. K., and Dorn, J. E., ASM 59, 930 (1966).Google Scholar
40.Wolfenstine, J., Kim, H.K., and Earthman, J.C., Scripta Metall. Mater. 26, 1823 (1992).CrossRefGoogle Scholar
41.Wolfenstine, J., J. Mater. Sci. Lett. 9, 1091 (1990).CrossRefGoogle Scholar
42.Rudy, M. and Sauthoff, G., Mater. Sci. Eng. 81, 525 (1986).CrossRefGoogle Scholar
43.Yaney, D. L. and Nix, W. D., J. Mater. Sci. 23, 3088 (1986).CrossRefGoogle Scholar
44.Cannon, W.R. and Sherby, O.D., Metall. Trans. 1, 1030 (1970).CrossRefGoogle Scholar
45.Mohamed, F. A. and Langdon, T.G., Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
46.Pahutova, M. and Cadek, J., Phys. Status Solidi A 56, 305 (1979).CrossRefGoogle Scholar
47.Mohamed, F. A., Mater. Sci. Eng. 61, 149 (1983).CrossRefGoogle Scholar
48.Hong, S.H. and Weertman, J., Acta Metall. 34, 743 (1986).CrossRefGoogle Scholar
49.Hemker, K. J., Mills, M. J., and Nix, W. D., Acta Metall. Mater. 39, 1901 (1991).CrossRefGoogle Scholar
50.Weertman, J., J. Appl. Phys. 28, 1185 (1957).CrossRefGoogle Scholar
51.Weertman, J. and Weertman, J. R., in Physical Metallurgy, edited by Chan, R. W. (North-Holland, Amsterdam, The Netherlands, 1965), p. 1002.Google Scholar
52.Mukherjee, A.K. and Dorn, J.E., J. Inst. Met. 93, 397 (1964-1965).Google Scholar
53.Flinn, P. A., Trans. Metall. Soc. AIME 233, 714 (1960).Google Scholar
54.Martin, P. L., Mendiratta, M. G., and Lipsitt, H. A., Metall. Trans. 14A, 2876 (1983).Google Scholar
55.Whittenberger, J.D., J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
56.Nabarro, F. R. N., in Report From The Conference on The Strength of Solids (Physics Society, London, 1948), p. 75.Google Scholar
57.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
58.Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
59.Raj, S. V. and Langdon, T. G., Acta Metall. 37, 843 (1989).CrossRefGoogle Scholar
60.Ruano, O. A., Miller, A. K., and Sherby, O. D., Mater. Sci. Eng. 51, 9 (1981).CrossRefGoogle Scholar
61.Frost, H. J. and Ashby, M.F., Deformation Mechanism Maps (Pergamon Press, Oxford University, 1982).Google Scholar
62.Ghosh, A. K., Basu, A., and Kung, H., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 259.Google Scholar
63.Whittenberger, J. D., Viswanadham, R. S., Mannan, S. K., and Kumar, K. S., J. Mater. Res. 4, 1164 (1989).CrossRefGoogle Scholar
64.DiPietro, M. S., Kumar, K. S., and Whittenberger, J. D., J. Mater. Res. 6, 530 (1991).CrossRefGoogle Scholar
65.Kumar, K. S., DiPietro, M. S., and Whittenberger, J. D., Acta Metall. Mater. 41, 1379 (1993).CrossRefGoogle Scholar