Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:16:09.438Z Has data issue: false hasContentIssue false

Electrorheological Properties of Suspensions Based on Polyaniline-montmorillonite Clay Nanocomposite

Published online by Cambridge University Press:  31 January 2011

Jun Lu
Affiliation:
Institute of Electrorheological Technology, 141#, Northwestern Polytechnical University, Xi'an, 710072 People's Republic of China
Xiaopeng Zhao
Affiliation:
Institute of Electrorheological Technology, 141#, Northwestern Polytechnical University, Xi'an, 710072 People's Republic of China
Get access

Abstract

It is thought that high-dielectric constant, suitable conductivity, and dielectric loss dominate electrorheological (ER) effects. According to this viewpoint, the polyaniline/montmorillonite nanocomposite (PANI-MMT) particles with high-dielectric constant and suitable conductivity were synthesized by an emulsion intercalation method. The electrorheological properties of the suspensions of PANI-MMT particles in silicone oil have been investigated under direct current electric fields. At room temperature, it was found that the yield stress of PANI-MMT ER fluid was 7.19 kPa in 3 kV/mm, which is much higher than that of pure polyaniline (PANI), that of pure montmorillonite (MMT) as well as that of the mixture of polyaniline with clay (PANI+MMT). In the range of 10–100 °C, the yield stress changed only 6.5% with the variation of temperature. The sedimentation ratio of PANI-MMT ERF was about 98% after 60 days. The structure of PANI-MMT particles was characterized by infrared, x-ray diffraction (XRD), and transmission electron microscopy (TEM) spectrometry, respectively. The XRD spectra show that the inner layer distance of PANI-MMT can be enhanced to 1.52 nm when the PANI was inserted into the interlayer of MMT, whereas it is only 0.96 nm for free MMT. TEM shows that the diameter of PANI-MMT particles is about 100 nm. The dielectric constant of PANI-MMT nanocomposite was increased 5.5 times that of PANI and 2.7 times that of MMT, besides, the conductivity of PANI-MMT particle was increased about 8.5 times that of PANI at 1000 Hz. Meanwhile, the dielectric loss tangent can also be increased about 1.7 times that of PANI. It is apparent that the notable ER effect of PANI-MMT ER fluid was attributed to the prominent dielectric property of the polyaniline-montmorillonite nanocomposite particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Halsey, T.C., Science 258, 761 (1992).CrossRefGoogle Scholar
2.Block, H. and Kelly, J.P., J. Phys. D: Appl. Phys. 21, 1661 (1988).CrossRefGoogle Scholar
3.Willams, E.W., Rigby, S.G., Sproston, J.L., and Stanway, R., J. Non-Newtonian Fluid Mech. 47, 221 (1993); S. B. Choi, Y. T. Choi, E. G. Chang, S. J. Han, and C. S. Kim, Mechatronics. 8, 143 (1998).CrossRefGoogle Scholar
4.Choi, H.J., Cho, M.S., and Jhon, M.S., Polym., Adv. Tech. 8, 697 (1997).3.0.CO;2-X>CrossRefGoogle Scholar
5.Gow, C.J. and Zukoski, C.F., J. Colloid Interface Sci, 136, 175 (1989); H.J. Choi, T.W. Kim, M.S. Cho, S.G. Kim, and M.S. Jhon, Eur. Polym. J. 33, 699 (1997); H.J. Choi, M.S. Cho, and K. To, Physica A 254, 272 (1998).CrossRefGoogle Scholar
6.Goodwin, J.W., Markham, G.M., and Vinent, B., J. Phys. Chem. B 101, 1961 (1997).CrossRefGoogle Scholar
7.Cho, M.S., Choi, H.J., and To, K., Macromol. Rapid Commun. 19, 271 (1998).3.0.CO;2-O>CrossRefGoogle Scholar
8.Kawasumi, M., Hasegawa, N., Koto, M., Usuki, A., and Okada, A., Macromolecules 30, 6333 (1997); R.A. Vaia, B.B. Sauer, O.K. Dse, and E.P. Giannelis, J. Polym. Sci: Part B: Polym. Phys. 35, 59 (1997); H.L. Tyan, K.H. Wei, and T.E. Hsieh, J. Polym. Sci: Part B: Polym. Phys. 38, 2873 (2000).CrossRefGoogle Scholar
9.Wang, M.S. and Pinnavaia, T.J., Chem. Mater. 6, 468 (1994);CrossRefGoogle Scholar
10.Ogata, N., Kawakage, S., and Ogihara, T., Polymer 38, 5115 (1997);CrossRefGoogle Scholar
11.Usuki, A., Kojoma, Y., Kawasumi, M., Okada, A., Kuranchi, T., and Kamigaito, O., Polym. Prepr. 31, 651 (1990); K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. A: Polym. Chem. 31, 2493 (1993); P.B. Messersmith and E.P. Giannelis, J. Polym. Sci. A: Polym. Chem. 33, 1047 (1995); P. Kelly, A. Akelah, S. Outubuddin, and A. Moet, J. Mater. Sci. 29, 2274 (1994).Google Scholar
12.Par, J.H., Lim, Y.T., and Park, O.O., Macromol. Rapid Commun. 22, 616 (2001).Google Scholar
13.Kuramoto, N., Yamazaki, M., Nagai, K., and Koyama, K., Thin Solid Films 239, 169 (1994); K. Yatsuzuka, K. Miura, N. Kuramoto, and K Asano, IEEE Trans. Ind. Applicat. 31, 457 (1995).CrossRefGoogle Scholar
14.Choi, H.J., Kim, J.W., Noh, M.H., Lee, D.C., Suh, M.S., Shin, M.J., and Jhon, M.S., J. Mat. Sci. Lett. 18, 1505 (1999).CrossRefGoogle Scholar
15.Wu, C.W. and Conrad, H., Phys. Rev. 56, 5789 (1997); X. Zhao, J. Yin and L. Xiang, Chinese J. Mater. (in Chinese) Res. 15, 308 (2001); X. Zhao, J. Yin, L. Xiang, and Q. Zhao, Chinese J. Mater. Res. (in Chinese) 14, 604 (2000); Y. Lan, S. Men, X. Zhao, K. Lu, Appl. Phys. Lett. 72, 653 (1998); T. Hao, Appl. Phys. Lett. 70, 1956 (1997).Google Scholar
16.Yin, J. and Zhao, X., J. Phys. D: Appl. Phys. 34, 2063 (2001); J.B. Yin and X. P. Zhao, Chin. Phys. Lett. 1144 (2001).CrossRefGoogle Scholar
17.Zhao, X.P. and Lu, J., Synthesis of Polyaniline/Montmorillonite Clay Nanocomposite and its ER Behaviors, Chinese Patent 01106797.7 (2001).Google Scholar
18.Kim, J.W., Kim, S.G., Choi, H.J., Suh, M.S., Shin, M.J., and Jhon, M.S., in Proceedings of the 7th International Conference on Electrorheological Fluids and Magneto-Rheological Suspensions, edited by Tao, R. (World Scientific, Singapore, 2000), p. 111.CrossRefGoogle Scholar
19.Chin, B.D. and Park, O.O., J. Rheol. 44, 397 (2000).CrossRefGoogle Scholar
20.Jeffrey, D.J. and Acrivos, A., AIChE J. 22, 417 (1976).CrossRefGoogle Scholar
21.Conrad, H., Sprecher, A.F., Choi, Y., and Chen, Y., J. Rheology, 35, 1393 (1991); B. Liu and M. T. Shaw, J. Rheol. 45, 641 (2001).CrossRefGoogle Scholar
22.Zhao, X.P., Luo, C.R., and Zho, B.L., Mater. Rev. 8, 12 (1993).Google Scholar
23.Wnek, G.E., Synth. Met. 15, 213 (1986).CrossRefGoogle Scholar
24.Block, H., Kelly, J.P., Qin, A., and Waston, T., Langmuir. 6, 6 (1990).CrossRefGoogle Scholar
25.Davis, L.C., J. Appl. Phys. 72, 1334 (1992).CrossRefGoogle Scholar
26.Block, H. and Kelly, J.P., in Progress in Electrorheology, edited by , Havelka and Filisko, F.E. (Plenum, New York, 1995), p. 19;CrossRefGoogle Scholar
27., Böse and Trendler, A., in Proc. of the 7th Int. Conf. on ERF and MRS, edited by Tao, R., (World Scientific, Singapore, 2000), p. 80.Google Scholar
28.Isichenko, M.B., Rev. Mod. Phys. 64, 961 (1992).CrossRefGoogle Scholar