Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T09:14:26.924Z Has data issue: false hasContentIssue false

Electron-diffraction study on ∈-iron nitride powders with various nitrogen contents: Variation of long-range nitrogen ordering

Published online by Cambridge University Press:  03 March 2011

Z.Q. Liu
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
A. Leineweber*
Affiliation:
Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
E.J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany
K. Mitsuishi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
K. Furuya
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Homogeneous ∈-iron nitride powder particles of the compositions Fe3N1.00, Fe3N1.22, Fe3N1.30, and Fe3N1.39 were investigated using selected-area electron diffraction. The superstructure reflections, due to N ordering on the octahedral interstitial sites of a hexagonal close-packed (hcp) arrangement of Fe, indicate a hexagonal supercell with a′ = 31/2ahcp, c′ = chcp for all cases; P6322 space group symmetry for Fe3N1.00, Fe3N1.30, and Fe3N1.39; and lower symmetry (P312) for Fe3N1.22 and some of the Fe3N1.30 particles. Recognition of the occurrence of double diffraction is essential for correct interpretation of the diffraction patterns. Additionally, diffuse scattering by some of the Fe3N1.39 grains was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liedtke, D., Baudis, U., Boßlet, J., Huchel, U., Klümper-Westkamp, H., Lerche, W., Spies, H-J. Heat treatment of iron-based materials-nitriding and nitrocarborising (Wärmebehandlung von Eisenwerkstoffen – Nitrieren und Nitrocarburieren) (Expert-Verlag, Renningen-Malmsheim, Germany, (2006).Google Scholar
2.Wriedt, H.A., Gokcen, N.A., Nafziger, R.H.: The Fe–N (iron– nitrogen) system. Bull. Alloys Phase Diagr. 8, 355 (1987).CrossRefGoogle Scholar
3.Hendricks, S.B., Kosting, P.B.: The crystal structure of Fe2P, Fe2N, Fe3N and FeB. Z. Kristallogr. 74, 511 (1930).CrossRefGoogle Scholar
4.Jack, K.H.: Binary and ternary interstitial alloys I. The iron-nitrogen system: The structures of Fe4N and Fe2N. Proc. R. Soc. A 195, 34 (1948).Google Scholar
5.Rechenbach, D., Jacobs, H.: Structure determination of ζ–Fe2N by neutron and synchrotron powder diffraction. J. Alloys Compd. 235, 15 (1996).CrossRefGoogle Scholar
6.Jack, K.H.: The iron-nitrogen system: The crystal structures of ϵ-phase iron nitrides. Acta Crystallogr. 5, 404 (1952).CrossRefGoogle Scholar
7.Leineweber, A., Jacobs, H., Hüning, F., Lueken, H., Kockelmann, W.: Nitrogen ordering and ferromagnetic properties of ϵ–Fe3N1+x (0.10 ⩽ x ⩽ 0.39) and ϵ–Fe3(N0.80C0.20)1.38. J. Alloys Compd. 316, 21 (2001).CrossRefGoogle Scholar
8.Leineweber, A., Jacobs, H., Hüning, F., Lueken, H., Schilder, H., Kockelmann, W.: ϵ–Fe3N: Magnetic structure, magnetization and temperature dependent disorder of nitrogen. J. Alloys Compd. 288, 79 (1999).CrossRefGoogle Scholar
9.Leineweber, A., Jacobs, H.: Theoretical analysis of occupational ordering in hexagonal interstitial compounds: Carbides, nitrides and oxides with “ϵ-type” superstructures. J. Alloys Compd. 308, 178 (2000).CrossRefGoogle Scholar
10.Bugaev, V.N., Chepul’skii, R.V.: On the problem of the description of the ordered structures in binary solid solutions with a hexagonal crystal lattice. Acta Crystallogr., Sect. A. 52, 198 (1996).CrossRefGoogle Scholar
11.Lee, T-H., Oh, C-S., Han, H.N., Lee, C.G., Kim, S-J., Takaki, S.: On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. Acta Crystallogr., Sect. B 61, 137 (2005).CrossRefGoogle ScholarPubMed
12.Liu, Z.Q., Li, D.X., Hei, Z.K., Hashimoto, H.: Identification of ϵ′–Fe2N and ϵ′–Fe3N superstructures studied with high-resolution electron microscopy. Scripta Mater. 45, 455 (2001).CrossRefGoogle Scholar
13.Liu, Z.Q., Li, D.X., Hei, Z.K., Hashimoto, H.: Electron diffraction study on ϵ″ superstructure in the compound layer of ion-nitrided pure iron. Scripta Mater. 46, 179 (2002).CrossRefGoogle Scholar
14.Leineweber, A., Mittemeijer, E.J.: Diffraction line broadening due to lattice parameter variations caused by a spatially varying scalar variable: Its orientation dependence caused by locally varying nitrogen content in ϵ–FeN0.433. J. Appl. Crystallogr. 37, 123 (2004).CrossRefGoogle Scholar
15.Kooi, B.J., Somers, M.A.J., Mittemeijer, E.J.: Thermodynamics and long-range order of interstitials in a hexagonal close-packed lattice. Metall. Mater. Trans. A 25A, 2797 (1994).CrossRefGoogle Scholar
16.Khachaturian, A.G.: Theory of Structural Transformations in Solids (Wiley, New York, 1983).Google Scholar
17.Liapina, T., Leineweber, A., Mittemeijer, E.J., Kockelmann, W.: The lattice parameters of ϵ-iron nitrides: Lattice strains due to a varying degree of nitrogen ordering. Acta Mater. 52, 173 (2004).CrossRefGoogle Scholar
18.Leineweber, T. Ordering behavior of nitrogen as well as magnetism in binary nitrides of some 3-d metals: Mn/N, Fe/N, and Ni/N (Ordnungsverhalten von Stickstoff sowie Magnetismus in binären Nitriden einiger 3d-Metalle: Mn/N, Fe/N und Ni/N). PhD. Thesis, Universität Dortmund, Dortmund, Germany (1999).Google Scholar
19.Shang, S., Böttger, A.J.: Application of the cluster variation method to ϵ–Fe2N1−z and ζ–Fe2N: Ordering of interstitial atoms. Acta Mater. 51, 3597 (2003).CrossRefGoogle Scholar
20.Hahn, Th.: International Tables For Crystallography, Vol. A, Space Group Symmetry (Kluwer Academic, Dordrecht, The Netherlands, 1995).Google Scholar
21.Hiraga, K., Hirabayashi, M.: Long-range and short-range order in interstitial compounds M2X with special reference to V2C and Nb2C. J. Phys. (Paris) 38,224 (1977).CrossRefGoogle Scholar
22.Hiraga, K., Hirabayashi, M.: The formation of varieties of carbon ordering in pseudobinary compounds of V2C, Nb2C and Ta2C. J. Appl. Crystallogr. 13, 17 (1980).CrossRefGoogle Scholar
23.Potter, D., Geils, R.: Investigation of the V3N phase in the vanadium–nitrogen system. Scripta Metall. 6, 395 (1972).CrossRefGoogle Scholar
24.Onozuka, T.: Nitrogen ordering in V9N4 and V32N16 studied by neutron and electron diffraction. Trans. Jpn. Inst. Met. 23, 315 (1982).CrossRefGoogle Scholar