Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:12:55.379Z Has data issue: false hasContentIssue false

Electron microscopic studies of internal gettering of nickel in silicon

Published online by Cambridge University Press:  31 January 2011

P.K. Sinha
Affiliation:
Department of Chemical, Bio and Materials Engineering, Arizona State University, Tempe, Arizona 85287-1604
W.S. Glaunsinger
Affiliation:
Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604
Get access

Abstract

The internal gettering of nickel in (100) silicon wafers implanted with 2.5 ⊠ 1015 argon-ions/cm2 at 280 keV has been studied by electron microscopy. Nickel deposited on the back surface is gettered by forming a discontinuous layer of nickel silicide, NiSi2, in the argon-implanted region near the front surface. Electron microdiffraction and high-resolution electron microscopy indicate that the layers of nickel silicide probably grow epitaxially on the undamaged silicon surrounding the silicide.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sze, S. M., VLSI Technology (McGraw-Hill Book Company, New York, 1983); Tan, T.Y. and Tice, W. K., Phil. Mag. 34 (4), 615 (1976).Google Scholar
2Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983).Google Scholar
3Woodbury, H. H. and Ludwig, G.W., Phys. Rev. 117, 102 (1960).Google Scholar
4Weber, E. R., Appl. Phys. A 30, 1 (1983).Google Scholar
5Ourmazd, A. and Schroter, W. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1985), Vol. 36, p. 25.Google Scholar
6Vanderwalker, D. M., Phys. Stat. Sol. (a) 86, 507 (1984).CrossRefGoogle Scholar
7Buck, T.M., Poate, J. M., and Pickar, K.A., Surf. Sci. 33, 362 (1973).CrossRefGoogle Scholar
8Sinha, P. K. and Glaunsinger, W. S., Semiconductor Fabrication: Technology and Metrology (ASTM, Philadelphia, PA, 1989), p. 339.Google Scholar
9Johnson, W. S. and Gibbsons, J. F., Projected Range Statistics in Semiconductors (1970).Google Scholar
10Shinde, S. L. and De Jonghe, L. C., J. Electron Microscopy Tech. 3, 361 (1986).CrossRefGoogle Scholar
11Poate, J. M. and Tung, R.T., Layered Structures and Interface Kinetics: Their Technology and Applications (KTK Scientific Publisher, Japan, 1985), p. 149.Google Scholar
12Chen, S.H., Zheng, L.R., Carter, C.B., and Mayer, J.W., J. Appl. Phys. 57 (2), 258 (1985).CrossRefGoogle Scholar
13Chiu, K. C., Poate, J. M., Rowe, J. E., Sheng, T.T., and Cullis, A. G., Appl. Phys. Lett. 38 (12), 988 (1981).Google Scholar
14Comin, F., Rowe, J. E., and Citrin, P. H., Phys. Rev. Lett. 51 (26), 2402 (1983).CrossRefGoogle Scholar
15Hansen, M., Metallurgy and Metallurgical Engineering Series (McGraw-Hill Book Co., New York, 1959).Google Scholar
16Bender, H., Phys. Stat. Sol. (a) 86, 245 (1984).CrossRefGoogle Scholar
17Bourret, A., Proc. of the 13th Int. Conf. on Defects in Semiconductors (Electronic Materials Committee of the Metallurgical Society of AIME, California, 1983).Google Scholar
18Maher, D. M., Staudinger, A., and Patel, J. R., J. Appl. Phys. 47 (9), 3813 (1976).Google Scholar
19Sinha, P. K., Dissertation (Arizona State University, 1988).Google Scholar