Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:16:24.905Z Has data issue: false hasContentIssue false

Electron microscopic characterization of diamond films grown on Si by bias-controlled chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

G-H.M. Ma
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Y. H. Lee
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. T. Glass
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

Diamond films grown by Bias-Controlled Hot Filament Chemical Vapor Deposition (BCCVD) on silicon (Si) substrates were characterized by Transmission Electron Microscopy (TEM). Both plan-view and cross-sectional TEM samples were made from diamond films grown under different biasing conditions. It was found that defect densities in the films were substantially reduced under zero and reverse bias (substrate negative relative to the filament) as compared to forward bias. Furthermore, the diamond/Si interface of the reverse and zero bias films consisted of a single thin interfacial layer whereas multiple interfacial layers existed at the diamond/Si interface of films grown under forward (positive) bias. Tungsten (W) contamination was also found in the interfacial layers of forward bias films. It is concluded that forward biasing in the present condition is not favorable for growing high quality, low defect density, diamond films. The possible mechanisms which induced the microstructural differences under different biasing conditions are discussed.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spitsyn, B.V., Bouilov, L. L., and Deryagin, B.V., J. Cryst. Growth 52, 219 (1981).Google Scholar
2Spear, Karl E., J. Am. Ceram. Soc. 72 (2), 171 (1989).Google Scholar
3Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).Google Scholar
4Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
5Matsumoto, S., Sato, Y., Tsutsami, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).Google Scholar
6Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., J. Appl. Phys. 21, 483 (1982).Google Scholar
7Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).Google Scholar
8Singh, B., Arie, Y., Levine, A.W., and Mesker, O. R., Appl. Phys. Lett. 52 (20), 1658 (1988).Google Scholar
9Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).Google Scholar
10Sawabe, A. and Inuzuka, T., Thin Solid Films 137, 89 (1986).Google Scholar
11Lee, Y. H., Richard, P. D., Bachmann, K. J., and Glass, J.T., Appl. Phys. Lett. 56 (7), 620 (1990).Google Scholar
12LeGrice, Y. M., M. S. Thesis, North Carolina State University (1990).Google Scholar
13LeGrice, Y. M. and Nemanich, R. J., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
14Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).Google Scholar
15Zhu, W., Badzian, A. B., and Messier, R., J. Mater. Res. 4, 659 (1989).Google Scholar
16Williams, B.E., Kong, H.S., and Glass, J.T., J. Mater. Res. 5, 801 (1990).CrossRefGoogle Scholar
17Narayan, J., Srivatsa, A. R., and Ravi, K.V., Appl. Phys. Lett. 54 (17), 1659 (1989).Google Scholar
18Woods, G. S., Philos. Mag. 23, 473 (1971).Google Scholar
19Kawarada, H., Mar, K. S., Suzuki, J-I., Ito, T., Mori, H., Fujita, H., and Hiraki, A., Jpn. J. Appl. Phys. 26 (11), L1903 (1987).Google Scholar
20Ma, J-S., Kawarada, H., Yonehara, T., Suzuki, J-I., Wei, J., Yokota, Y., Mori, H., Fujita, H., and Hiraki, A., Appl. Surf. Sci. 41/42, 572 (1989).Google Scholar
21Williams, B. E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).Google Scholar
22Lee, Y. H., Doctorate Dissertation, North Carolina State University (1990).Google Scholar
23Celii, F. G., Pehrsson, P. E., Wang, H-T., and Butler, J. E., Appl. Phys. Lett. 52 (24), 2043 (1988).CrossRefGoogle Scholar
24Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 53 (17), 1605 (1988).Google Scholar
25Pepper, S.V., J. Vac. Sci. Technol. 20 (2), 213 (1982).CrossRefGoogle Scholar
26Pepper, S.V., Appl. Phys. Lett. 38 (5), 344 (1981).Google Scholar