Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:38:55.888Z Has data issue: false hasContentIssue false

Electrochemical Synthesis and Room Temperature Oxidation Behavior of Cu Nanowires

Published online by Cambridge University Press:  03 March 2011

Xingmin Liu
Affiliation:
High-performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People’s Republic of China
Yanchun Zhou*
Affiliation:
High-performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Highly oriented copper nanowires were electrochemically synthesized in a porous alumina membrane template using a new type of weak-acid electrolyte. The Cu nanowires that were deposited have (110) preferred orientation, which is different from most electrochemically deposited Cu nanowires, and they can grow homogeneously. Transmission electron microscopy was used to investigate the room-temperature oxidation behavior, and it was observed that sample treatment methods greatly influence the oxidation rate of the wires. Cu nanowires with different diameters have different resistance to oxidation. The orientation relationship between oxide layer and small-diameter Cu nanowire was determined to be (001) Cu2O // (111) Cu, (110) Cu2O // (110) Cu, and [110] Cu2O // [112] Cu. The possible oxidation process is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takasago, H., Adachi, K. and Takada, M.: A copper polyimide metal–base packaging technology. J. Electron. Mater. 12, 319 (1989).CrossRefGoogle Scholar
2Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization, and application. Adv. Mater. 15, 353 (2003).Google Scholar
3Nalwa, H.S.: Handbook of Nanostructured Materials and Nanotechnology (Academic Press, New York, 2000).Google Scholar
4Shalaev, V.M. and Moskovits, M.: Nanostructured Materials: Clusters, Composites, and Thin Films (American Chemical Society, Washington, D.C., 1997).CrossRefGoogle Scholar
5Edelstein, A.S. and Cammarata, R.C.: Nanomaterials: Synthesis, Properties, and Applications (Institute of Physics, Philadelphia, PA, 1996).CrossRefGoogle Scholar
6Toimil-Molares, M.E., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I.U. and Vetter, J.: Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 13, 62 (2001).Google Scholar
7Konishi, Y., Motoyama, M., Matsushima, H., Fukunaka, Y., Ishii, R. and Ito, Y.: Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 559, 149 (2003).Google Scholar
8Tian, M.L., Wang, J.U., Kurtz, J., Mallouk, T.E. and Chan, M.H.W.: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).CrossRefGoogle Scholar
9Gao, T., Meng, G.W., Zhang, J., Wang, Y.W., Liang, C.H., Fan, J.C. and Zhang, L.D.: Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Appl. Phys. A-Mater. 73, 251 (2001).CrossRefGoogle Scholar
10Sehayek, T., Vaskevich, A. and Rubinstein, I.: Preparation of graded materials by laterally controlled template synthesis. J. Am. Chem. Soc. 125, 4718 (2003).Google Scholar
11Lisiecki, I., Filankembo, A., Sack-Kongehl, H., Weiss, K., Pileni, M.P. and Urban, J.: Structural investigations of copper nanorods by high-resolution TEM. Phys. Rev. B. 61, 4968 (2000).CrossRefGoogle Scholar
12Tanori, J. and Pileni, M.P.: Change in the shape of copper nanoparticles in ordered phases. Adv. Mater. 7, 862 (1995).CrossRefGoogle Scholar
13Tanori, J. and Pileni, M.P.: Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13, 639 (1997).CrossRefGoogle Scholar
14Pileni, M.P., Guilk-Krzywicki, T., Tanori, J., Filankembo, A. and Dedieu, J.C.: Template design of microreactors with colloidal assemblies: Control the growth of copper metal rods. Langmuir 14, 7359 (1998).CrossRefGoogle Scholar
15Liu, Z.P., Yang, Y., Liang, J.B., Hu, Z.K., Li, S., Peng, S. and Qian, Y.T.: Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J. Phys. Chem. B 107, 12658 (2003).CrossRefGoogle Scholar
16Yadav, R.M., Singh, A.K. and Srivastava, O.N.: Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation. J. Nanosci. Nanotechnol. 3, 223 (2003).CrossRefGoogle ScholarPubMed
17Cao, M.H., Hu, C.W., Wang, Y.H., Guo, Y.H., Guo, C.X. and Wang, E.B.: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun. 15, 1884 (2003).Google Scholar
18Li, Q. and Wang, C.R.: Cu nanostructures formed via redox reaction of Zn nanowire and Cu2+ containing solutions. Chem. Phys. Lett. 375, 525 (2003).CrossRefGoogle Scholar
19Monson, C.F. and Woolley, A.T.: DNA-templated construction of copper nanowires. Nano Lett. 3, 359 (2003).CrossRefGoogle Scholar
20Martin, C.R.: Nanomaterials—A membrane-based synthetic approach. Science 266, 1961 (1994).Google Scholar
21Hulteen, J.C. and Martin, C.R.: General template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
22Sides, C.R., Li, N.C., Patrissi, C.J., Scrosati, B. and Martin, C.R.: Nanoscale materials for lithium-ion batteries. MRS Bull. 27, 604 (2002).Google Scholar
23Rabin, O., Herz, P.R., Lin, Y.M., Akinwande, A.I., Cronin, S.B. and Dresselhaus, M.S.: Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv. Funct. Mater. 13, 631 (2003).CrossRefGoogle Scholar
24Sander, M.S. and Tan, L.S.: Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Adv. Funct. Mater. 13, 393 (2003).CrossRefGoogle Scholar
25Wu, Y.Y. and Yang, P.D.: Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520 (2001).Google Scholar
26Wu, Y.Y. and Yang, P.D.: Germanium/carbon core-sheath nanostructures. Appl. Phys. Lett. 77, 43 (2000).CrossRefGoogle Scholar
27Wang, Z.L., Kong, X.Y., Wen, X.G. and Yang, S.H.: In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires. J. Phys. Chem. B 107, 8275 (2003).Google Scholar
28Tang, C.C., Bando, Y. and Liu, Z.W.: Thermal oxidation of gallium nitride nanowires. Appl. Phys. Lett. 83, 3177 (2003).Google Scholar
29Kamins, T.I., Li, X. and Williams, R.S.: Thermal stability of Ti-catalyzed Si nanowires. Appl. Phys. Lett. 82, 263 (2003).Google Scholar
30Toimil-Molares, M.E., Balogh, A.G., Cornelius, T.W., Neumann, R. and Trautmann, C.: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004).CrossRefGoogle Scholar
31Liu, Z.W. and Bando, Y.: Oxidation behaviour of copper nanorods. Chem. Phys. Lett. 378, 85 (2003).Google Scholar
32Toimio-Molares, M.E., Hohberger, E.M., Schaeflein, C., Blick, R.H., Neumann, R. and Trautmann, C.: Electrical characterization of electrochemically grown single copper nanowires. Appl. Phys. Lett. 82, 2139 (2003).Google Scholar
33Kunze, J., Maurice, V., Klein, L.H., Strehblow, H.H. and Marcus, P.: In situ STM study of the anodic oxidation of Cu (001) in 0.1 M NaOH. J. Electroanal. Chem. 554, 113 (2003).Google Scholar
34Jovic, V.D. and Jovic, B.M.: EIS and differential capacitance measurements onto single-crystal faces in different solutions—Part II: Cu (111) and Cu (100) in 0.1 M NaOH. J. Electroanal. Chem. 541, 13 (2003).Google Scholar
35Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L.: Fabrication and magnetic properties of metallic nanowires. Science 261, 1316 (1993).CrossRefGoogle ScholarPubMed
36Wang, J.G., Tian, M.L., Mallouk, T.E. and Chan, M.H.W.: Microtwinning in template-synthesized single-crystal metal nanowires. J. Phys. Chem. B 108, 841 (2004).Google Scholar
37Barton, J.K., Vertegel, A.A., Bohannan, E.W. and Switzer, J.A.: Epitaxial electrodeposition of copper(I) oxide on single-crystal copper. Chem. Mater. 13, 952 (2001).Google Scholar
38Witte, G., Braun, J., Nowack, D., Bartels, L., Neu, B. and Meyer, G.: Oxygen-induced reconstructions on Cu(211). Phys. Rev. B 58, 13224 (1998).Google Scholar
39Wang, Z.X. and Tian, F.H.: The adsorption of O atom on Cu(100), (110), and (111) low-index and step defect surfaces. J. Phys. Chem. B 107, 6153 (2003).Google Scholar