Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:52:51.478Z Has data issue: false hasContentIssue false

Electrical study of ZrO2/Si system formed at different oxidation/nitridation temperatures for extended duration in N2O ambient

Published online by Cambridge University Press:  15 October 2013

Yew Hoong Wong*
Affiliation:
Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
Kuan Yew Cheong
Affiliation:
Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electrical properties of ZrO2 formed by simultaneous oxidation and nitridation of sputtered Zr thin films on Si have been systematically investigated. Various oxidation/nitridation temperatures (500, 700, 900, and 1100 °C) have been carried out in N2O ambient for an extended time of 20 min. Results indicated that the sample oxidized and nitrided at 700 °C possessed the highest effective dielectric constant of 18.22 and electrical breakdown field of 10.7 MV/cm at a current density of 10−6 A/cm2. This is attributed to the lowest effective oxide charge, interface-trap density, and total interface-trap density. The Fowler–Nordheim tunneling mechanism has been investigated for all samples and the highest value of barrier height extracted between the conduction band edges of oxide and semiconductor was 1.22 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
Wong, Y.H. and Cheong, K.Y.: ZrO2 thin films on Si substrate. J. Mater. Sci. - Mater. Electron. 21, 980 (2010).CrossRefGoogle Scholar
Lee, M.S., An, C-H., Park, K., Choi, J-Y., and Kim, H.: Effect of Y, Gd, Dy, and Ce doping on the microstructural and electrical properties of sol-gel-deposited ZrO2 film. J. Electrochem. Soc. 158, G133 (2011).CrossRefGoogle Scholar
Jõgi, I., Kukli, K., Ritala, M., Leskelä, M., Aarik, J., Aidla, A., and Lu, J.: Atomic layer deposition of high capacitance density Ta2O5-ZrO2 based dielectrics for metal-insulator-metal structures. Microelectron. Eng. 87, 144 (2010).CrossRefGoogle Scholar
Miyazaki, S.: Characterization of high-k gate dielectric/silicon interfaces. Appl. Surf. Sci. 190, 66 (2002).CrossRefGoogle Scholar
Yamaguchi, T., Satake, H., and Fukushima, N.: Band diagram and carrier conduction mechanisms in ZrO2 MIS structures. IEEE Trans. Electron Devices 51, 774 (2004).CrossRefGoogle Scholar
Lee, B., Choi, K.J., Hande, A., Kim, M.J., Wallace, R.M., Kim, J., Senzaki, Y., Shenai, D., Li, H., Rousseau, M., and Suydam, J.: A novel thermally-stable zirconium amidinate ALD precursor for ZrO2 thin films. Microelectron. Eng. 86, 272 (2009).CrossRefGoogle Scholar
Torres-Huerta, A.M., Domínguez-Crespo, M.A., Ramírez-Meneses, E., and Vargas-García, J.R.: MOCVD of zirconium oxide thin films: Synthesis and characterization. Appl. Surf. Sci. 255, 4792 (2009).CrossRefGoogle Scholar
Zhu, L.Q., Fang, Q., He, G., Liu, M., and Zhang, L.D.: Interfacial and optical properties of ZrO2/Si by reactive magnetron sputtering. Mater. Lett. 60, 888 (2006).CrossRefGoogle Scholar
Hsieh, L-Z., Ko, H-H., Kuei, P-Y., and Lee, C-Y.: Growth evolution of ZrO2 from deposited Zr metal during thermal oxidation. Jpn. J. Appl. Phys. 45, 7680 (2006).CrossRefGoogle Scholar
Kim, H.D., Jeong, S.W., You, M.T., and Roh, Y.: Effects of annealing gas (N2, N2O, O2) on the characteristics of ZrSixOy/ZrO2 high-k gate oxide in MOS devices. Thin Solid Films 515, 522 (2006).CrossRefGoogle Scholar
Nagasato, Y., Aya, T., Iwazaki, Y., Hasumi, M., Ueno, T., and Kuroiwa, K.: Low-temperature fabrication of ultrathin ZrO2/Si structure using metal deposition followed by oxygen annealing. Jpn. J. Appl. Phys. 44, 5 (2005).CrossRefGoogle Scholar
de Almeida, R.M.C. and Baumvol, I.J.R.: Reaction-diffusion in high-k dielectrics on Si. Surf. Sci. Rep. 49, 1 (2003).CrossRefGoogle Scholar
Campbell, S.A. and Smith, R.C.: Chemical vapour deposition. In High-κ Gate Dielectrics, edited by Houssa, M. (Institute of Physics: Bristol, UK and Philadelphia, PA, 2004), pp. 6588.Google Scholar
Chen, L-M., Lai, Y-S., and Chen, J.S.: Influence of pre-deposition treatments on the interfacial and electrical characteristics of ZrO2 gate dielectrics. Thin Solid Films 515, 3724 (2007).CrossRefGoogle Scholar
Ishii, H., Nakajima, A., and Yokoyama, S.: Growth and electrical properties of atomic-layer deposited ZrO2/Si-nitride stack gate dielectrics. J. Appl. Phys. 95, 536 (2004).CrossRefGoogle Scholar
Koyama, M., Suguro, K., Yoshiki, M., Kamimuta, Y., Koike, M., Ohse, M., Hongo, C., and Nishiyama, A.: Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN. International Electron Devices Meeting (IEDM), Washington, DC, 2001; IEEE: New Jersey, p. 459.Google Scholar
Enta, Y., Suto, K., Takeda, S., Kato, H., and Sakisaka, Y.: Oxynitridation of Si(100) surface with thermally excited N2O gas. Thin Solid Films 500, 129 (2006).CrossRefGoogle Scholar
Wong, Y.H. and Cheong, K.Y.: Thermal oxidation and nitridation of sputtered Zr thin film on Si via N2O gas. J. Alloys Compd. 509, 8728 (2011).CrossRefGoogle Scholar
Wong, Y.H. and Cheong, K.Y.: Effects of oxidation and nitridation temperatures on electrical properties of sputtered Zr thin film based on Si in N2O ambient. Electron. Mater. Lett. 8, 47 (2012).CrossRefGoogle Scholar
Wong, Y.H. and Cheong, K.Y.: Electrical characteristics of oxidized/nitrided Zr thin film on Si. J. Electrochem. Soc. 158, H1270 (2011).CrossRefGoogle Scholar
Wong, Y.H. and Cheong, K.Y.: Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si. Nano. Res. Lett. 6, 489 (2011).CrossRefGoogle ScholarPubMed
Chiu, F-C., Lin, Z-H., Chang, C-W., Wang, C-C., Chuang, K-F., Huang, C-Y., Lee, J.Y-M., and Hwang, H-L.: Electrical conduction mechanisms of metal/La2O3/Si structure. J. Appl. Phys. 97, 034506 (2005).CrossRefGoogle Scholar
Wang, J., Zhao, L., Luu, N.H., Wang, D., and Nakashima, H.: Structural and electrical properties of Zr oxide film for high-k gate dielectrics by using electron cyclotron resonance plasma sputtering. Appl. Phys. A: Mater. Sci. Process. 80, 1781 (2005).CrossRefGoogle Scholar
Schroder, D.K.: Semiconductor Material, and Device Characterization (Wiley, New Jersey, 2006).Google Scholar
Kurniawan, T., Cheong, K.Y., Abdul Razak, K., Lockman, Z., and Ahmad, N.: Oxidation of sputtered Zr thin film on Si substrate. J. Mater. Sci. - Mater. Electron. 22, 143 (2011).CrossRefGoogle Scholar
Tanner, P.G., Dimitrijev, S., and Harrison, H.B.: Slow trap profiling-a new technique for characterising slow traps in MOS dielectrics. Conference on Optoelectronic and Microelectronic Materials and Devices Proceedings, Canberra, Australia, 1996; IEEE: New Jersey, p. 211.Google Scholar
Dimitrijev, S., Tanner, P.G., and Harrison, H.B.: Slow-trap profiling of NO and N2O nitrided oxides grown on Si and SiC substrates. Microelectron. Reliab. 39, 441 (1999).CrossRefGoogle Scholar
Hembram, K.P.S.S., Dutta, G., Waghmare, U.V., and Mohan Rao, G.: Electrical and structural properties of zirconia thin films prepared by reactive magnetron sputtering. Physica B 399, 21 (2007).CrossRefGoogle Scholar
Xiaolong, Y., Qianghua, X., and Tao, M.: Electrical breakdown in a two-layer dielectric in the MOS structure. Mater. Res. Soc. Symp. Proc. 811, D2.8.1 (2004).Google Scholar