Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T16:00:56.826Z Has data issue: false hasContentIssue false

Electrical resistance of a carbon nanotube bundle

Published online by Cambridge University Press:  03 March 2011

L. Langer
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgique
L. Stockman
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgique
J. P. Heremans
Affiliation:
Physics Department, General Motors Research, Warren, Michigan 48090
V. Bayot
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgique
C. H. Olk
Affiliation:
Physics Department, General Motors Research, Warren, Michigan 48090
C. Van Haesendonck
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgique
Y. Bruynseraede
Affiliation:
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgique
J-P. Issi
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgique
Get access

Extract

The first direct electrical resistance measurements performed on a single carbon nanotube bundle from room temperature down to 0.3 K and in magnetic fields up to 14 T are reported. From the temperature dependence of the resistance above 2 K, it is shown that some nanotubes exhibit a semimetallic behavior akin to rolled graphene sheets with a similar band structure, except that the band overlap, Δ ≈ 3.7 meV, is about 10 times smaller than for crystalline graphite. In contrast to graphite which shows a constant low-temperature resistivity, the nanotubes exhibit a striking increase of the resistance followed by a broad maximum at very low temperatures. A magnetic field applied perpendicular to the sample axis decreases the resistance. Above 1 K, this behavior is consistent with the formation of Landau levels. At lower temperatures, the resistance shows an unexpected drop at a critical temperature which increases linearly with magnetic field. These striking features could be related to the unique quasi-one-dimensional structure of the carbon nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, S., Nature 354, 5658 (1991).CrossRefGoogle Scholar
2Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631634 (1992).CrossRefGoogle Scholar
3Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 15791581 (1992).CrossRefGoogle Scholar
4Tanaka, K., Okahara, K., Okada, M., and Yamabe, T., Chem. Phys. Lett. 191, 469472 (1992).CrossRefGoogle Scholar
5Saito, R., Dresselhaus, G., and Dresselhaus, M. S., J. Appl. Phys. 73, 494500 (1992).CrossRefGoogle Scholar
6Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 18041811 (1992).CrossRefGoogle Scholar
7Ajiki, H. and Ando, T., J. Phys. Soc. Jpn. 62, 12551266 (1993).CrossRefGoogle Scholar
8Lambin, Ph., Philippe, L., Charlier, J-C., and Michenaud, J-P., Comp. Mat. Science 1 (in press).Google Scholar
9Ge, M. and Sattler, K., Science 260, 515 (1993).CrossRefGoogle Scholar
10Gallagher, M. J., Chen, D., Jacobsen, B. P., Sarid, D., Lamb, L. D., Tinker, F. A., Jiao, J., Huffman, D. R., Seraphin, S., and Zhou, D., Surf. Sci. Lett. 281, L335 (1993).CrossRefGoogle Scholar
11Stockman, L., Neuttiens, G., Van Haesendonck, C., and Bruynseraede, Y., Appl. Phys. Lett. 62, 2935 (1993).CrossRefGoogle Scholar
12Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220222 (1992).CrossRefGoogle Scholar
13Olk, C. H. and Heremans, J. P., J. Mater. Res. 9, 259262 (1994).CrossRefGoogle Scholar
14Stockman, L., Vloeberghs, H., Heyvaert, I., Van Haesendonck, C., and Bruynseraede, Y., Ultramicrosc. 42–44, 1317 (1992).CrossRefGoogle Scholar
15Klein, C. A., J. Appl. Phys. 33, 3338 (1962).CrossRefGoogle Scholar
16Charlier, J. C., Gonze, X., and Michenaud, J-P., Carbon 32 (1994, in press).CrossRefGoogle Scholar
17Charlier, J-C., Michenaud, J-P., and Lambin, Ph., Phys. Rev. B 46, 45404543 (1992).CrossRefGoogle Scholar
18For a review, see Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments, Springer Series in Materials Science, edited by Cardona, M.. (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
19Bayot, V., Piraux, L., Michenaud, J-P., Issi, J-P., Lelaurain, M., and Moore, A., Phys. Rev. B 41, 1177011779 (1990).CrossRefGoogle Scholar
20Bright, A. A., Phys. Rev. B 20, 5142 (1979).CrossRefGoogle Scholar