Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T03:40:45.507Z Has data issue: false hasContentIssue false

Electrical properties of ultrafine-grained yttria-stabilized zirconia ceramics

Published online by Cambridge University Press:  31 January 2011

Shusheng Jiang
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Walter A. Schulze
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Vasantha R. W. Amarakoon
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

Nanoparticles of yttria-doped tetragonal zirconia polycrystalline ceramics (Y-TZP) with an average crystallite size of less than 9 nm were prepared by a combustion synthesis process. Dense and fine-grained (<200 nm) Y-TZP ceramics were obtained by fast-firing using temperatures lower than 1400 °C and dwell times of less than 2 min. Impedance spectroscopy was employed to measure conductivities of oxygen vacancies in the grain and the grain boundary of the fine-grained Y-TZP. The relationships between the concentration of the oxygen vacancies in the grain boundary and measurable physical parameters were determined semiquantitatively. The oxygen vacancy concentrations and activation energies for the oxygen-ion conduction in the grain and the grain boundary of the fine-grained Y-TZP were found to be independent of the average grain size in the average grain-size range of 90–200 nm. These experimental results suggest that, in order to retain the abnormally high oxygen vacancy concentrations of the Y-TZP nanoparticles and thus enhance the oxygen-ion conductivity, it may be necessary to decrease the average grain size to approximately 10 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wakai, F. and Nagano, T., J. Mater. Sci. 26, 241247 (1991).CrossRefGoogle Scholar
2.Nagano, T., Kato, H., and Wakai, F., J. Mater. Sci. 27, 35753580 (1992).CrossRefGoogle Scholar
3.Schlag, S. and Eicke, H-F., Solid State Commun. 91, 883887 (1994).CrossRefGoogle Scholar
4.Wada, S., Suzuki, T., and Noma, T., J. Mater. Res. 10, 306311 (1995).CrossRefGoogle Scholar
5.Elissalde, C., Weill, F., and Ravez, J., Mater. Sci. Eng. B25, 8591 (1994).CrossRefGoogle Scholar
6.Krasilnikov, A. S., Mamsurova, L. G., Oleshko, V. P., Trusevich, N. G., Shcherbakova, L. G., and Vishnev, A. A., Supercond. Sci. Technol. 7, 638644 (1994).CrossRefGoogle Scholar
7.Choy, J-H., Han, Y-S., and Song, S-W., Mater. Lett. 19, 257262 (1994).Google Scholar
8.Maehara, Y. and Langdon, T. G., J. Mater. Sci. 25, 22752286 (1990).CrossRefGoogle Scholar
9.Okubo, T. and Nagamoto, H., J. Mater. Sci. 30, 749757 (1995).CrossRefGoogle Scholar
10.Boutz, M. M. R., Olde Scholtenhuis, R. J. M., Winnubst, A. J. A., and Burggraaf, A. J., Mater. Res. Soc. Bull. 29, 3140 (1994).CrossRefGoogle Scholar
11.Skandan, G., Hahn, H., Kear, B. B., Roddy, M., and Cannon, W. R., Mater. Lett. 20, 305309 (1994).CrossRefGoogle Scholar
12.Chen, C. S., Boutz, M. M. R., Boukamp, B. A., Winnubst, A. J. A., de Vries, K. J., and Burggraaf, A. J., Mater. Sci. Eng. A168, 231234 (1993).CrossRefGoogle Scholar
13.Boutz, M. M. R., Chen, C. S., Winnubst, L., and Burggraaf, A. J., J. Am. Ceram. Soc. 77, 26322640 (1994).CrossRefGoogle Scholar
14.Boutz, M. M. R., Winnubst, L., and Burggraaf, A. J., J. Am. Ceram. Soc. 78, 121128 (1995).CrossRefGoogle Scholar
15.Huang, D., Venkatachari, K. R., Ostrander, S. P., Schulze, W. A., and Stangle, G. C., J. Mater. Res. 10, 756761 (1995).Google Scholar
16.Liu, H., Feng, L., Zhang, X., and Xue, Q., J. Phys. Chem. 99, 332334 (1995).CrossRefGoogle Scholar
17.Venkatachari, K. R., Huang, D., Ostrander, S. P., Schulze, W. A., and Stangle, G. C., J. Mater. Res. 10, 748755 (1995).CrossRefGoogle Scholar
18.Johnson, D. L., in Proceedings of the Seventh Round Table Conference on Sintering, edited by Uskokovic, D. P., Palmour III, H., and Spriggs, R. M. (Plenum Press, New York, 1989), pp. 497506.Google Scholar
19.Prochazka, S. and Coble, R. L., Phys. Sint. 2, 1553 (1970).Google Scholar
20.Miyayama, M. and Yanagida, K., J. Am. Ceram. Soc. 74, C194–C195 (1984).Google Scholar
21.MacDonald, J. R., Impedance Spectroscopy (Wiley, New York, 1987), pp. 217223.Google Scholar
22.Nieh, T. G., Yaney, D. L., and Wadsworth, J., Scripta Metall. 23, 20072012 (1989).CrossRefGoogle Scholar
23.Hughes, A. E. and Badwal, S. P. S., Solid State Ionics 46, 265274 (1991).CrossRefGoogle Scholar
24.Theunissen, G. S. A. M., Winnubst, A. J. A., and Burggraaf, A. J., J. Mater. Sci. 27, 50575066 (1990).CrossRefGoogle Scholar