Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T19:12:36.504Z Has data issue: false hasContentIssue false

Electrical and thermal transport properties of the Y1 − x Mx CrO3 system

Published online by Cambridge University Press:  31 January 2011

W.J. Weber
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352
C.W. Griffin
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352
J.L. Bates
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352
Get access

Abstract

The effects of substituting divalent metal ions (Mg, Ca, Sr, Ba) for Y in YCrO3 were investigated by electrical conductivity, Seebeck coefficient, and thermal conductivity measurements. The electrical conductivity results were consistent with the hopping-type conduction of a temperature-independent concentration of small polarons, with measured activation energies of 0.18-0.26 eV. The Seebeck coefficient increased nearly linearly with temperature and indicated p-type conductivity. Both electrical conductivity and Seebeck coefficient results show a strong dependence on dopant size (ionic radius) and indicate that the highest carrier concentrations were associated with Ca as the dopant, which is attributed to the similar ionic radii of Ca2+ and Y3+. The thermal conductivity decreased slightly with temperature and dopant concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meadowcroft, D. B., Br. J. Appl. Phys. 2, 1225 (1969).Google Scholar
2Webb, J. B., Sayer, M., and Mansingh, A., Can. J. Phys. 55, 1725 (1977).CrossRefGoogle Scholar
3Khattak, C. P. and Cox, D. E., Mater. Res. Bull. 12, 463 (1977).CrossRefGoogle Scholar
4Karim, D. P. and Aldred, A. T., Phys. Rev. B 20, 2255 (1979).Google Scholar
5Bansal, K. P., Kumari, S., Das, B. K., and Jain, G. C., J. Mater. Sci. 18, 2095 (1983).CrossRefGoogle Scholar
6Flandermeyer, B. K., Nasrallah, M. M., Agarwal, A. K., and Anderson, H. U., J. Am. Ceram. Soc. 67, 195 (1984).Google Scholar
7Anderson, H. U., Nasrallah, M. M., Flandermeyer, B. K., and Agarwal, A. K., J. Solid State Chem. 56, 325 (1985).CrossRefGoogle Scholar
8Mizusaki, J., Sasamoto, T., Cannon, W. R., and Bowen, H. K., J. Am. Ceram. Soc. 66, 247 (1983).CrossRefGoogle Scholar
9Mizusaki, J., Sasamoto, T., Cannon, W. R., and Bowen, H. K., J. Am. Ceram. Soc. 65, 363 (1982).CrossRefGoogle Scholar
10Kertesz, M., Riess, I., Tannhauser, D. S., Langpape, R., and Rohr, F. J., J. Solid State Chem. 42, 125 (1982).CrossRefGoogle Scholar
11Tanaka, J., Takahashi, K., Yukino, K., and Horiuchi, S., Phys. Status Solidi A80, 621 (1983).Google Scholar
12Kononyuk, I. F., Tolochko, S. P., Lutsko, V. A., and Anishchik, V. M., J. Solid State Chem. 48, 209 (1983).CrossRefGoogle Scholar
13Levin, E. M. and McMurdie, H. F., Phase Diagrams for Ceramists 1975 Supplement, edited by Reser, M. K. (American Ceramic Society, Columbus, OH, 1975), pp. 144146.Google Scholar
14Ruiz, J. S., Anthony, A. M., and Foex, M., C. R. Acad. Sci., Paris B 264, 1271 (1967).Google Scholar
15Weber, W. J., Bates, J. L., Griffin, C. W., and Olsen, L. C., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W. D., and Stokes, R. J. (Materials Research Society, Pittsburgh, PA, 1986), pp. 235242.Google Scholar
16Pechini, M. P., U. S. Patent No. 3, 330, 697 (July 1967).Google Scholar
17Trestman-Matts, A., Dorris, S. E., and Mason, T. O., J. Am. Ceram. Soc. 66, 589 (1983).Google Scholar
18Bates, J. L., Griffin, C. W., Marchant, D. D., and Gamier, J. E., Am. Ceram. Soc. Bull. 65, 673 (1986).Google Scholar
19Swalin, R. A., Thermodynamics of Solids (Wiley-Interscience, New York, 1972), 2nd ed., p. 83.Google Scholar
20Touloukian, Y. S. and Buyco, E. M., Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 5.Google Scholar
21Austin, I. G. and Mott, N. F., Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
22Goodenough, J. B., Prog. Solid State Chem. 5, 145 (1971).CrossRefGoogle Scholar
23Heikes, R. R., in Thermoelectricity: Science and Engineering, edited by Heikes, R. R. and Ure, R. W. (Wiley-Interscience, New York, 1961), Chap. 4.Google Scholar
24Tuller, H. L. and Nowick, A. S., J. Phys. Chem. Solids 38, 859 (1977).CrossRefGoogle Scholar
25Wimmer, J. M. and Bransky, I., in Electrical Conductivity in Ceramics and Glasses, edited by Tallan, N. M. (Dekker, New York, 1974), Part A, Chap. 4.Google Scholar
26Emin, D. and Holstein, T., Ann. Phys. (N.Y.) 53, 439 (1969).CrossRefGoogle Scholar
27Emin, D. and Wood, C., in Proceedings 18th Intersociety Energy Conversion Engineering Conference (American Institute of Chemical Engineering, New York, 1983), Vol. 1, pp. 222226.Google Scholar
28Wood, C. and Emin, D., Phys. Rev. B 29, 4582 (1984).Google Scholar
29Goodenough, J. B., Phys. Rev. 164, 785 (1967).Google Scholar
30Joint Committee on Powder Diffraction Standards, Set 25 of the Powder Diffraction File, edited by Berry, L. G. (JCPDS, Swarthmore, PA, 1975), Card 25-1078.Google Scholar
31Chaikin, P. M. and Beni, G., Phys. Rev. B 13, 647 (1976).Google Scholar