Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T16:22:47.260Z Has data issue: false hasContentIssue false

Elastic properties and phonon conductivities of Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5) solid solutions

Published online by Cambridge University Press:  31 January 2011

M. Radovic*
Affiliation:
Department of Mechanical Engineering, Texas A&M, College Station, Texas 77840
A. Ganguly
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
M.W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Herein we compare the lattice parameters, room temperature shear and Young’s moduli, and phonon thermal conductivities of Ti2AlC0.5N0.5 and Ti3Al(C0.5, N0.5)2 solid solutions with those of their end members, namely Ti2AlC, Ti2AlN, Ti3AlC2, and Ti4AlN2.9. In general, the replacement of C by N decreases the unit cell volumes and increases the elastic moduli and phonon thermal conductivities. The increase in the latter two properties, however, is sensitive to the concentrations of defects, most likely vacancies on one or more of the sublattices.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barsoum, M.W.: The Mn +1AXn phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 2000CrossRefGoogle Scholar
2Barsoum, M.W.: Physical properties of the MAX phases in Encyclopedia of Materials Science and Technology edited by Elsevier Amsterdam, The Netherlands 2006Google Scholar
3Barsoum, M.W.Radovic, M.: Mechanical properties of the MAX phases in Encyclopedia of Materials Science and Technology edited by Elsevier Amsterdam, The Netherlands 2004Google Scholar
4Barsoum, M.W., Farber, L.El-Raghy, T.: Dislocations, kink bands and room temperature plasticity of Ti3SiC2. Metall. Mater. Trans. A 30, 1727 1999CrossRefGoogle Scholar
5Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M.Murugaiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 2003CrossRefGoogle ScholarPubMed
6Barsoum, M.W., Ali, M.El-Raghy, T.: Processing and characterization of Ti2AlC, Ti2AlCN and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 31, 1857 2000CrossRefGoogle Scholar
7Barsoum, M.W., Brodkin, D.El-Raghy, T.: Layered machinable ceramics for high temperature applications. Scripta Metall. Mater. 36, 535 1997CrossRefGoogle Scholar
8Barsoum, M.W.El-Raghy, T.: A progress report on Ti3SiC2, Ti3GeC2 and the H-phases, M2BX. J. Mater. Synth. Proc. 5, 197 1997Google Scholar
9Procopio, A.T., El-Raghy, T.Barsoum, M.W.: Synthesis of Ti4AlN3 and phase equilibria in the Ti–Al–N system. Metall. Mater. Trans. A 31, 373 2000Google Scholar
10Barsoum, M.W., Farber, L., Levin, I., Procopio, A., El-Raghy, T.Berner, A.: High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited. J. Am. Ceram. Soc. 82(9), 2545 1999CrossRefGoogle Scholar
11Manoun, B., Zhang, F.X., Saxena, S.K., El-Raghy, T.Barsoum, M.W.: X-ray high-pressure study of Ti2AlN and Ti2AlC. J. Phys. Chem. Solids 67, 2091 2006CrossRefGoogle Scholar
12Manoun, B., Saxena, S.K., Hug, G.Barsoum, M.W.: Synthesis and compressibility of Ti3(Al1.0Sn0.2)C2 and Ti3Al(C0.5,N0.5)2. J. Appl. Phys. 101, 113523 2007CrossRefGoogle Scholar
13Ganguly, A.: Synthesis and characterization of MAX phase solid solutions. Ph.D. Thesis, Drexel University, Philadelphia, PA,2006Google Scholar
14Tzenov, N.Barsoum, M.W.: Synthesis and characterization of Ti3AlC1.8. J. Am. Ceram. Soc. 83, 825 2000CrossRefGoogle Scholar
15Zhou, Y.C., Chen, J.X.Wang, J.Y.: Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1−xSixC2 solid solutions. Acta Mater. 54, 1317 2006CrossRefGoogle Scholar
16Rawn, C.J., Barsoum, M.W., El-Raghy, T., Procopio, A., Hoffmann, C.M.Hubbard, C.R.: Structure of Ti4AlN3—A layered Mn −1AXn nitride. Mater. Res. Bull. 35, 1785 2000CrossRefGoogle Scholar
17Barsoum, M.W., Rawn, C.J., El-Raghy, T., Procopio, A., Porter, W.D., Wang, H.Hubbard, C.R.: Thermal properties of Ti4AlN3. J. Appl. Phys. 87, 8407 2000CrossRefGoogle Scholar
18Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A., Debuigne, J.Groboth, G.: Solid state properties of group IVb carbonitrides. J. Alloys Compd. 217, 137 1995CrossRefGoogle Scholar
19Radovic, M., Barsoum, M.W., Ganguly, A., Zhen, T., Finkel, P., Kalidindi, S.R.Lara-Curzio, E.: On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K temperature range. Acta Mater. 54, 2757 2006CrossRefGoogle Scholar
20Finkel, P., Barsoum, M.W.El-Raghy, T.: Low temperature dependencies of the elastic properties of Ti4AlN3 and Ti3Al1.1C1.8 and Ti3SiC2. J. Appl. Phys. 87, 1701 2000CrossRefGoogle Scholar
21Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., El-Raghy, T.Barsoum, M.W.: Electrical and thermal properties of M2AlC (M = Ti, Cr, Nb and V). Phys. Rev. B 72, 115120 2005CrossRefGoogle Scholar
22Finkel, P., Seaman, B., Harrell, K., Palma, J., Hettinger, J.D., Lofland, S.E., Ganguly, A., Barsoum, M.W., Sun, Z., Li, S.Ahuja, R.: Low temperature elastic, electronic and transport properties of Ti3Si1−xGexC2 solid solutions. Phys. Rev. B 70, 085104 2004CrossRefGoogle Scholar
23Scabarozi, T., Ganguly, A., Hettinger, J.D., Lofland, S.E., Finkel, P., El-Raghy, T.Barsoum, M.W.: Electronic and thermal properties of Ti3Al(C0.5,N0.5)2 Ti2Al(C0.5,N0.5) and Ti2AlN (2008, submitted)CrossRefGoogle Scholar
24Jhi, S-H., Louie, S.G., Cohen, M.L.Ihm, J.: Vacancy hardening and softening in transition metal carbides and nitrides. Phys. Rev. Lett. 86, 3348 2001CrossRefGoogle ScholarPubMed
25Pietzka, M.A.Schuster, J.: Summary of constitution data of the system Al–C–Ti. J. Phase Equilib. 15, 392 1994CrossRefGoogle Scholar