Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T06:46:10.041Z Has data issue: false hasContentIssue false

Effects of Zr/Ti ratio and post-annealing temperature on the electrical properties of lead zirconate titanate (PZT) thick films fabricated by aerosol deposition

Published online by Cambridge University Press:  31 January 2011

Byung-Dong Hahn
Affiliation:
Center for Future Technology, Korea Institute of Materials Science, Changwon, Gyeong-Nam 641-010, Korea; and School of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-742, Korea
Dong-Soo Park*
Affiliation:
Center for Future Technology, Korea Institute of Materials Science, Changwon, Gyeong-Nam 641-010, Korea
Jong-Jin Choi
Affiliation:
Center for Future Technology, Korea Institute of Materials Science, Changwon, Gyeong-Nam 641-010, Korea
Woon-Ha Yoon
Affiliation:
Center for Future Technology, Korea Institute of Materials Science, Changwon, Gyeong-Nam 641-010, Korea
Jungho Ryu
Affiliation:
Center for Future Technology, Korea Institute of Materials Science, Changwon, Gyeong-Nam 641-010, Korea
Doh-Yeon Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-742, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of the Zr/Ti ratio on the electrical properties of lead zirconate titanate (PZT) thick films prepared by the aerosol deposition (AD) process were investigated to optimize the electrical properties of the thick film. The Zr/Ti ratio was varied among 45/55, 52/48, and 60/40, and the post-annealing temperature was varied from 500 to 900 °C. Microscopic examination of the as-deposited films revealed crack-free and dense microstructures with a thickness of 10 μm. The annealed films showed markedly improved electrical properties in comparison with the as-deposited films with increasing post-annealing temperature. With increasing Zr/Ti ratio, the remnant polarization and coercive field decreased. The dielectric constant and piezoelectric coefficient, d33, were highest for the PZT 52/48 film. This film annealed at 900 °C exhibited the best overall combination of electrical properties, with a dielectric constant, remnant polarization, and piezoelectric coefficient of 1320, 31.1 μC/cm2, and 150 pC/N, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797 1999CrossRefGoogle Scholar
2Setter, N.: Electroceramics: Looking ahead. J. Eur. Ceram. Soc. 21(10–11), 1279 2001CrossRefGoogle Scholar
3Beeby, S.P., Blackburn, A., White, N.M.: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems. J. Micromech. Microeng. 9, 218 1999CrossRefGoogle Scholar
4Dorey, R.A., Whatmore, R.W.: Electroceramic thick film fabrication for MEMS. J. Electroceram. 12, 19 2004CrossRefGoogle Scholar
5Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 1997CrossRefGoogle Scholar
6Whatmore, R.W., Zhang, Q., Huang, Z., Dorey, R.A.: Ferroelectric thin and thick films for microsystems. Mater. Sci. Semicond. Process. 5, 65 2003CrossRefGoogle Scholar
7Chen, H.D., Udayakumar, K.R., Cross, L.E., Bernstein, J.J., Niles, L.C.: Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates. J. Appl. Phys. 77(7), 3349 1995CrossRefGoogle Scholar
8Corker, D.L., Zhang, Q., Whatmore, R.W., Perrin, C.: PZT “composite” ferroelectric thick films. J. Eur. Ceram. Soc. 22(3), 383 2002CrossRefGoogle Scholar
9Thiele, E.S., Damjanovic, D., Setter, N.: Processing and properties of screen-printed lead zirconate titanate piezoelectric thick films on electroded silicon. J. Am. Ceram. Soc. 84(12), 2863 2001CrossRefGoogle Scholar
10Yao, K., He, X., Xu, Y., Chen, M.: Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach. Sens. Actuators, A 118, 342 2005CrossRefGoogle Scholar
11Akedo, J., Lebedev, M.: Microstructure and electrical properties of lead zirconate titanate thick films deposited by aerosol deposition method. Jpn. J. Appl. Phys. 38(9), 5397 1999CrossRefGoogle Scholar
12Akedo, J., Lebedev, M.: Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52, Ti0.48)O3 thick films formed by aerosol deposition method. J. Cryst. Growth 235, 415 2002CrossRefGoogle Scholar
13Imanaka, Y., Akedo, J.: Integrated RF module produced by aerosol deposition method in Proceedings of the 54th Electronic Components and Technology Conference, 1–4 June 2004 (IEEE, 2004), Vol. 2, pp. 1614–162Google Scholar
14Xu, F., Troiler-McKinstry, S., Ren, W., Xu, B., Xie, Z.L., Jemker, K.J.: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89(2), 1336 2001CrossRefGoogle Scholar
15Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics Academic Press 1971 142Google Scholar
16Kim, D.J., Maria, J.P., Kingon, A.I.: Compositional effects on the piezoelectric and ferroelectric properties of chemical solution deposited PZT thin films in Ferroelectric Thin Films X, edited by S.R. Gilbert, S. Trolier-McKinstry, Y. Miyasaka, S.K. Streiffer, and D.J. Wouters (Mater. Res. Soc. Symp. Proc. 688, Warrendale, PA, 2002), pp. C10.7.1–C10.7.6CrossRefGoogle Scholar
17Ramiens, D., Cattan, E., Soyer, C., Haccart, T.: Piezoelectric properties of sputtered PZT films: Influence of structure, microstructure, film thickness (Zr, Ti) ratio and Nb substitution. Mater. Sci. Semicond. Process. 5, 123–127 2003Google Scholar
18Khaenamkaew, P., Muensit, S., Bdikin, I.K., Kholkin, A.L.: Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films. Mater. Chem. Phys. 102, 159 2007CrossRefGoogle Scholar
19Foster, C.M., Bai, G-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., Amano, J.: Single-crystal Pb(ZrxTi1−x)O3 thin films prepared by metal-organic chemical vapor deposition: systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81(5), 2349 1997CrossRefGoogle Scholar
20Chen, H.D., Udayakumar, K.R., Cross, L.E., Bernstein, J.J., Niles, L.C.: Dielectric, ferroelectric and piezoelectric properties of lead zirconate titanate thick films on silicon substrates. J. Appl. Phys. 77(7), 3349 1995CrossRefGoogle Scholar
21Choi, J.J., Hahn, B.D., Ryu, J., Yoon, W.H., Park, D.S.: Effects of lead zinc niobate addition on the electrical properties of lead zirconate titanate thick films prepared by aerosol deposition method. J. Appl. Phys. (submitted)Google Scholar
22Hahn, B.D., Ko, K.H., Park, D.S., Choi, J.J., Yoon, W.H., Park, C., Kim, D.Y.: Effect of post-annealing on the microstructure and electrical properties of PMN-PZT films prepared by aerosol deposition process. J. Kor. Ceram. Soc. 43(2), 106 2006Google Scholar
23Wagner, C.N.J., Boldrick, M.S.: The structure of amorphous and nanocrystalline metals and alloys. Mater. Sci. Eng., A 133, 26 1991CrossRefGoogle Scholar
24Kwok, C.K., Desu, S.B.: Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 8(2), 339 1993CrossRefGoogle Scholar
25Lee, E.G., Wouters, D.J., Willems, G., Maes, H.E.: Influence of Zr/Ti ratios on the deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 70(18), 2404 1997CrossRefGoogle Scholar
26Kim, S.H., Yang, J.S., Koo, C.Y., Yeom, J.H., Yoon, E., Hwang, C.S., Park, J.S., Kang, S.G., Kim, D.J., Ha, J.: Dielectric and electromechanical properties of Pb(Zr,Ti)O3 thin films for piezo-microelectromechanical system devices. Jpn. J. Appl. Phys. 42, 5952 2003CrossRefGoogle Scholar