Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T07:29:04.670Z Has data issue: false hasContentIssue false

The effects of variable oxygen partial pressures during Bi-2223 tape processing

Published online by Cambridge University Press:  31 January 2011

T. G. Holesinger
Affiliation:
MST-6, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. F. Bingert
Affiliation:
MST-6, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. O. Willis
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
V. A. Maroni
Affiliation:
Chemical Science and Technology, Argonne National Laboratory, Argonne, Illinois 60521
A. K. Fischer
Affiliation:
Chemical Science and Technology, Argonne National Laboratory, Argonne, Illinois 60521
K. T. Wu
Affiliation:
State University of New York/Old Westbury Campus, Old Westbury, New York 11568
Get access

Abstract

The effect of changes in the oxygen partial pressure during the heat treatment of Bi-2223 tapes has been investigated. Distinct differences were observed in the phase assemblages, compositions, and critical current densities. Of particular importance in the correlation of transport properties and microstructure was the redistribution of lead in both the secondary phases and the Bi-2223 matrix. The highest Jc values were associated with tapes that contained Ca2PbO4 as part of the phase assemblage coupled with lower concentrations of lead in the superconducting phase. The high Jc of 30.4 kA/cm2 was obtained in tapes processed at 820 °C where the oxygen partial pressure was increased from 10% O2/Ar to 20% O2/Ar after 25 h of each 50-h sinter cycle. Samples processed only in 10% O2/Ar at 820 °C did not contain Ca2PbO4, had slightly higher concentrations of lead in the superconducting phase, and had significantly lower Jc values.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oh, S. S., Kubota, T., and Osamura, K., Physica C 171, 265 (1990).CrossRefGoogle Scholar
2.Zhu, W. and Nicholson, P. S., Appl. Phys. Lett. 61, 717 (1992).CrossRefGoogle Scholar
3.Oota, A., Iwaya, J., Saigou, T., and Funakura, M., Physica C 214, 9 (1992).CrossRefGoogle Scholar
4.Luo, J. S., Merchant, N., Escorcia-Aparicio, E. J., Maroni, V. A., Tani, B. S., Carter, W. L., and Riley, G. N. Jr, J. Mater. Res. 9, 3059 (1994).CrossRefGoogle Scholar
5.Rubin, L. M., Orlando, T. P., Sande, J. B. Vander, Swope, R., Gorman, G., Savoy, R., and Beyers, R., Appl. Phys. Lett. 61, 1977 (1992).CrossRefGoogle Scholar
6.Tetenbaum, M., Hash, M., Tani, B. S., Luo, J. S., and Maroni, V. A., Physica C 249, 396 (1995).Google Scholar
7.MacManus-Driscoll, J. L., Bravman, J. C., Savoy, R. J., Gorman, G., and Beyers, R., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
8.Holesinger, T. G., Miller, D. J., and Chumbley, L. S., Physica C 217, 85 (1993).Google Scholar
9.MacManus-Driscoll, J. L., Bravman, J. C., and Beyers, R., Physica C 251, 71 (1995).CrossRefGoogle Scholar
10.Suzuki, R. O., Bohac, P., and Gauckler, L. J., J. Am. Ceram. Soc. 75, 2833 (1992).Google Scholar
11.Jacob, K. T. and Mathews, T., J. Am. Ceram. Soc. 75, 3225 (1992).Google Scholar
12.Lee, H. K., Lee, K. W., Ha, D. H., Park, K., and Park, J. C., Appl. Phys. Lett. 55, 1249 (1989).Google Scholar
13.Parrell, J. A., Feng, Y., Dorris, S. E., and Larbalestier, D. C., J. Mater. Res. 11, 555 (1996).CrossRefGoogle Scholar
14.Nomura, S., Fuke, H., Yoshino, H., and Ando, K., Supercond. Sci. Technol. 6, 858 (1993).Google Scholar
15.Parrell, J. A., Larbalestier, D. C., and Dorris, S. E., IEEE Trans. Appl. Supercond. 5, 1275 (1995).CrossRefGoogle Scholar
16.Kaesche, S., Majewski, P., and Aldinger, F., J. Electron. Mater. 24, 1829 (1995).CrossRefGoogle Scholar
17.Iwai, Y., Hoshi, Y., Saito, H., and Takata, M., Physica C 170, 319 (1990).CrossRefGoogle Scholar
18.Majewski, P., Kaesche, S., Su, H. L., and Aldinger, F., Physica C, 295 (1994).CrossRefGoogle Scholar
19.Kusano, Y., Nanba, T., Takada, J., Egi, T., Ikeda, Y., and Takano, M., Physica C 219, 366 (1994).CrossRefGoogle Scholar
20.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
21.Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
22.Grivel, J-C., Jeremie, A., Hensel, B., and Flükiger, R., Supercond. Sci. Technol. 6, 725 (1993).Google Scholar
23.Luo, J. S., Dorris, S. E., Fischer, A. K., LeBoy, J. S., Maroni, V. A., Feng, Y., and Larbalestier, D. C., Supercond. Sci. Technol. 9, 412 (1996).Google Scholar
24.Huang, Y. T., Wang, W. N., Wu, S. F., Shei, C. Y., Hurng, W. M., Lee, W. H., and Wu, P. T., J. Am. Ceram. Soc. 73, 3507 (1990).Google Scholar
25.MacManus-Driscoll, J. L. and Sumal, T. K., Proceedings of the AIME Conference, Anaheim, Feb. 4–8, 1996.Google Scholar
26.Tallon, J. L., Buckley, R. G., Gilberd, P. W., Presland, M. R., Brown, I. W. R., Bowden, M. E., Christian, L. A., and Gogiel, R., Nature 333, 153 (1988).CrossRefGoogle Scholar
27.Morgan, P. E. D., Housely, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279 (1991).Google Scholar
28.Luo, J. S., Merchant, N., Maroni, V. A., Hash, M., and Rupich, M., in High Temperature Superconductors: Synthesis, Processing, and Large-Scale Applications, edited by Balachandran, U., McGinn, P. J., and Abel, J. S. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1996), pp. 3342.Google Scholar
29.Holesinger, T. G., Salazar, K. V., Phillips, D. S., Sargent, B. L., Bremser, J. K., Bingert, J. F., Willis, J. O., and Peterson, D. E., J. Mater. Res. 11, 2838 (1996).Google Scholar
30.Williams, K. P. J., Pitt, G. D., Smith, B. J. E., Whitley, A., Batchelder, D. N., and Hayward, I. P., J. Raman Spectrosc. 25, 131 (1994).CrossRefGoogle Scholar
31.Williams, K. P. J., Wilcock, I. C., Hayward, I. P., and Whitley, A., Spectrosc. 11, 45 (1996).Google Scholar
32.Barbillat, J., Dhamelincourt, P., Delhaye, M., and Silva, E. Da, J. Raman Spectrosc. 25, 3 (1994).Google Scholar
33.Wang, P. D., Cheng, C., Torres, C. M. Sotomayer, and Batchelder, D. N., J. Appl. Phys. 74, 5907 (1993).CrossRefGoogle Scholar
34.Wu, K. T., Fischer, A.K., Maroni, V. A., and Rupich, M. W., J. Mater. Res. 12, 1195 (1997).Google Scholar
35.Parrell, J. A., Polyanskii, A. A., Pashitski, A. E., and Larbalestier, D. C., Supercond. Sci. Technol. 9, 393 (1996).CrossRefGoogle Scholar
36.Kusano, Y., Nanba, T., Takada, J., Egi, T., Ikeda, Y., and Takano, M., Physica C 219, 366 (1994).Google Scholar
37.Parrell, J. A., Larbalestier, D. C., Riley, G. N. Jr, , Li, Q., Parrella, R. D., and Teplitsky, M., Appl. Phys. Lett. 69, 2915 (1996).Google Scholar