Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:45:29.342Z Has data issue: false hasContentIssue false

Effects of the fabrication temperature and oxygen flux on the properties and nitrogen dioxide sensitivity of the tin oxides-tin/graphene hybrid sensor

Published online by Cambridge University Press:  04 July 2016

Haichuan Mu*
Affiliation:
Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, People's Republic of China
Keke Wang
Affiliation:
Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, People's Republic of China
Haifen Xie
Affiliation:
Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The 1 nm tin oxides–tin (SnO x –Sn) compound films were thermally evaporated onto the chemical vapor deposition (CVD)-grown graphene films for the improved nitrogen dioxide (NO2) gas sensitivity, and the effects of the fabrication temperature and oxygen (O2) flux on the properties of the SnO x –Sn/graphene hybrid sensors including their composition, morphology, and microstructure as well as NO2 sensitivity were investigated. The composition of the SnO x –Sn compound films exhibited strong dependence on the fabrication temperature and O2 flux which could be ascribed to the hybrid effect of the desorption of the oxygen functional groups on the graphene and oxidation of the graphene and Sn. Such combining effects also demonstrated tremendous influence on the SnO x –Sn film morphology, in which the enhanced desorption of the oxygen functional groups on the graphene together with the oxidation of Sn with increasing fabrication temperature would facilitate the formation of large grain-sized and discontinuous films while the increasing O2 flux showed the opposite effects. Meanwhile, the crystallization of the SnO x –Sn compound films was promoted and deteriorated with the increasing temperature and O2 flux, respectively. The SnO x –Sn film morphology played vital role in NO2 gas sensitivity at room temperature, and the mechanism responsible for that was also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary Messing

References

REFERENCES

Zheng, Y., Jang, W., and Yao, P.: Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens. Actuators B 156(2), 723 (2011).CrossRefGoogle Scholar
Liu, J., Meng, F., Zhong, Y., Liu, J., Chen, G., Wan, Y., Qian, K., and Thalluri, S.M.: Assembly, formation mechanism, and enhanced gas-sensing properties of porous and hierarchical SnO2 hollow nanostructures. J. Mater. Res. 25(10), 1992 (2010).Google Scholar
Xing, R., Xu, L., Zhu, Y., Song, J., Qin, W., and Dai, Q.: Three-dimensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. Sens. Actuators B 188, 235 (2013).Google Scholar
Van Quang, V., Van Dung, N., Trong, N.S., Hoa, N.D., Van Duy, N., and Hieu, N.: Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105(1), 013107 (2014).CrossRefGoogle Scholar
Prades, J.D., Cirera, A., and Morante, J.R.: Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sens. Actuators B 142(1), 179 (2009).Google Scholar
Zhang, Z., Huang, K., Yuan, F., and Xie, C.: Gas-sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on SnO2 films. J. Mater. Res. 29(1), 139 (2014).Google Scholar
Wang, L., Dou, H., Li, F., Deng, J., Lou, Z., and Zhang, T.: Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sens. Actuators B 183, 467 (2013).Google Scholar
Son, J.Y., Lim, S.J., Cho, J.H., Seong, W.K., and Kim, H.: Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. Appl. Phys. Lett. 93(5), 053109 (2008).Google Scholar
Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., and Li, J.P.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654 (2004).Google Scholar
Choi, S-W., Park, J.Y., and Kim, S.S.: Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26(14), 1662 (2011).Google Scholar
Ahn, M.W., Park, K.S., Heo, J.H., Park, J.G., Kim, D.W., and Choi, K.J.: Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93(26), 263103 (2008).Google Scholar
Wang, J.X., Sun, X.W., Yang, Y., and Wu, C.M.L.: N–P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20(46), 465501 (2009).CrossRefGoogle ScholarPubMed
Chen, L., Bai, S., Zhou, G., Li, D., Chen, A., and Liu, C.C.: Synthesis of ZnO–SnO2 composites by microemulsion and sensing properties for NO2 . Sens. Actuators B 134(2), 360 (2008).Google Scholar
Lu, G., Xu, J., Sun, J., Yu, Y., Zhang, Y., and Liu, F.: UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B 162(1), 82 (2012).Google Scholar
Sharma, A., Tomar, M., and Gupta, V.: Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuators B 181, 735 (2013).CrossRefGoogle Scholar
Xu, S., Gao, J., Wang, L., Kan, K., Xie, Y., Shen, P., Li, L., and Shi, K.: Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NO x at room temperature. Nanoscale 7(35), 14643 (2015).Google Scholar
Jang, Y-G., Kim, W-S., Kim, D-H., and Hong, S-H.: Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 26(17), 2322 (2011).Google Scholar
Hemmati, S., Firooz, A.A., Khodadadi, A.A., and Mortazavi, Y.: Nanostructured SnO2–ZnO sensors: Highly sensitive and selective to ethanol. Sens. Actuators B 160(1), 1298 (2011).Google Scholar
Khoang, N.D., Van Duy, N., Hoa, N.D., and Van Hieu, N.: Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B 174, 594 (2012).CrossRefGoogle Scholar
Guo, J., Zhang, J., Gong, H., Ju, D., and Cao, B.: Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B 226, 266 (2016).Google Scholar
Wang, B., Wang, Y., Lei, Y., Xie, S., Wu, N., Gou, Y., Han, C., Shia, Q., and Fang, D.: Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C. 4, 295 (2016).Google Scholar
Kuanga, X., Liua, T., Shi, D., Wang, W., Yang, M., Hussain, S., Peng, X., and Pan, F.: Hydrothermal synthesis of hierarchical SnO2 nanostructures made of superfine nanorods for smart gas sensor. Appl. Surf. Sci. 364, 371 (2016).Google Scholar
Zhang, B., Fu, W., Li, H., Fu, X., Wang, Y., Bala, H., Wang, X., Sun, G., Cao, J., and Zhang, Z.: Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 363, 560 (2016).Google Scholar
Tan, W., Yu, Q., Ruan, X., and Huang, X.: Design of SnO2-based highly sensitive ethanol gas sensor based on quasi molecular-cluster imprinting mechanism. Sens. Actuators B 212, 47 (2015).Google Scholar
Zhang, D., Liu, A., Chang, H., and Xia, B.: Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5(4), 3016 (2015).Google Scholar
Lee, K-C., Chiang, Y-J., Lin, Y-C., and Pan, F-M.: Effects of PdO decoration on the sensing behavior of SnO2 toward carbon monoxide. Sens. Actuators B 226, 457 (2016).Google Scholar
Bing, Y., Zeng, Y., Feng, S., Qiao, L., Wang, Y., and Zheng, W.: Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuators B 227, 362 (2016).Google Scholar
Bai, S., Guo, W., Sun, J., Li, J., Tian, Y., Chen, A., Luo, R., and Li, D.: Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO. Sens. Actuators B 226, 96 (2016).CrossRefGoogle Scholar
Ma, N., Suematsu, K., Yuasa, M., Kida, T., and Shimanoe, K.: Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 7(10), 5683 (2015).Google Scholar
Yamazoe, N., Sakai, G., and Shimanoe, K.: Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63 (2003).Google Scholar
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183 (2007).Google ScholarPubMed
Schedin, F., Geim, A.K., Morozov, S.V., Hill, D.W., Blake, P., and Katsnelson, M.I.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007).CrossRefGoogle ScholarPubMed
Xu, D., Skachko, I., Barker, A., and Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491 (2008).Google Scholar
Novosetov, K.S., Geim, A.K., Morozov, S.Y., Jiang, D., Katsnelson, M.L., and Grigorieva, I.N.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197 (2005).CrossRefGoogle Scholar
Liu, G., Stillman, W., Rumyantsev, S., Shao, Q., Shur, M., and Balandin, A.A.: Low-frequency electronic noise in the double-gate single-layer graphene transistors. Appl. Phys. Lett. 95(3), 0333103 (2009).Google Scholar
Yavari, F., Castillo, E., Gullapalli, H., Ajayan, P.M., and Koratkar, N.: High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100(20), 203120 (2012).Google Scholar
Kakatkar, A., Abhilash, T.S., De Alba, R., Parpia, J.M., and Craighead, H.G.: Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26(12), 125502 (2015).Google Scholar
Nagelli, E., Naik, R., Xue, Y., Gao, Y., Zhang, M., and Dai, L.: Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24(44), 444010 (2013).Google Scholar
Mu, H., Zhang, Z., Zhao, X., Liu, F., Wang, K., and Xie, H.: High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl. Phys. Lett. 105(3), 033107 (2014).Google Scholar
Maehashi, K., Sofue, Y., Okamoto, S., Ohno, Y., Inouce, K., and Matsumoto, K.: Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens. Actuators B 187, 45 (2013).Google Scholar
Prezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., and Palermo, V.: Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C 117(20), 10683 (2013).Google Scholar
Yuan, W., Liu, A., Huang, L., Li, C., and Shi, G.: High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25(5), 766 (2013).Google Scholar
Lu, G., Ocola, L.E., and Chen, J.: Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009).Google Scholar
Lee, B., Park, S.Y., Kim, H.C., Cho, K.J., Vogel, E.M., and Kim, M.J.: Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl. Phys. Lett. 92(20), 203102 (2008).Google Scholar
Xuan, Y., Wu, Y.Q., Shen, T., Qi, M., Capano, M.A., and Cooper, J.A.: Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92(1), 013101 (2008).Google Scholar
Banerjee, S. and Wong, S.S.: Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B 106(47), 12144 (2002).Google Scholar
Wang, X., Tabakman, S.M., and Dai, H.: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130(26), 8152 (2008).Google Scholar
Mu, H., Wang, K., Zhang, Z., and Xie, H.: Formaldehyde graphene gas sensors modified by thermally evaporated tin oxides and tin compound films. J. Phys. Chem. C 119, 1010210108 (2015).Google Scholar
Ni, Z.H., Wang, H.M., Luo, Z.Q., Wang, Y.Y., Yu, T., and Wu, Y.H.: The effect of vacuum annealing on graphene. J. Raman Spectrasc. 41(5), 479 (2010).CrossRefGoogle Scholar
Zhang, E.X., Newaz, A.K.M., Wang, B., Zhang, C.X., Fleetwood, D.M., and Bolotin, K.I.: Ozone-exposure and annealing effects on graphene-on-SiO2 transistors. Appl. Phys. Lett. 101(12), 121601 (2012).Google Scholar
Alzina, F., Tao, H., Moser, J., García, Y., Bachtold, A., and Sotomayor-Torres, C.M.: Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy. Phys. Rev. B 82(7), 075422 (2010).Google Scholar
Mulyana, Y., Horita, M., Ishikawa, Y., Uraoka, Y., and Koh, S.: Thermal reversibility in electrical characteristics of ultraviolet/ozone-treated graphene. Appl. Phys. Lett. 103(6), 063107 (2013).Google Scholar
Al-Kuhaili, M.F.: Characterization of thin films produced by the thermal evaporation of silver oxide. J. Phys. D: Appl. Phys. 40(9), 2847 (2007).Google Scholar
Adamik, M., Barna, P.B., Tomov, I., and Biro, D.: Problems of structure evolution in polycrystalline films: Correlation between grain morphology and texture formation mechanisms. Phys. Status Solidi A 145(2), 275 (1994).Google Scholar
Barsan, N. and Weimar, U.J.: Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143 (2001).CrossRefGoogle Scholar
Deng, S., Tjoa, V., Fan, H.M., Tan, H.R., Sayle, D.C., and Olivo, M.: Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134(10), 4905 (2012).Google Scholar
Cui, S., Wen, Z., Mattson, E.C., Mao, S., Chang, J., and Weinert, M.: Indium-doped SnO2 nanoparticle–graphene nanohybrids: Simple one-pot synthesis and their selective detection of NO2 . J. Mater. Chem. A 1(14), 4462 (2013).Google Scholar
Srivastava, S., Jain, K., Singh, V.N., Singh, S., Vijayan, N., and Dilawar, N.: Faster response of NO2 sensing in graphene–WO3 composites. Nanotechnology 23(20), 205501 (2012).Google Scholar
Zhang, G. and Liu, M.: Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B 69(1), 144 (2000).CrossRefGoogle Scholar
Zhao, L., Choi, M., Kim, H.S., and Hong, S.H.: The effect of multiwalled carbon nanotube doping on the CO gas sensitivity of SnO2-based nanomaterials. Nanotechnology 18(44), 445501 (2007).Google Scholar
Tang, Y.B., Lee, C.S., Xu, J., Liu, Z.T., Chen, Z.H., He, Z.B., Cao, Y.L., Yuan, G.D., Song, H.S., Chen, L.M., Luo, L.B., Cheng, H.M., Zhang, W.J., Bello, I., and Lee, S.T.: Incorporation of graphene in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482 (2010).Google Scholar
Zhang, H., Feng, J., Fei, T., Liu, S., and Zhang, T.: SnO2 nanoparticles-reduced graphene oxide composites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472 (2014).Google Scholar