Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:31:32.149Z Has data issue: false hasContentIssue false

Effects of porosity on the thermal properties of a 380-aluminum alloy

Published online by Cambridge University Press:  31 January 2011

A. Manzano Ramírez
Affiliation:
CINVESTAV-Qro., Laboratorio de Investigación en Materiales, Centro Universitario UAQ, Cerro las Campanas s/n C.P. 76010 Querétaro Qro., México
F. J. Espinoza Beltrán
Affiliation:
CINVESTAV-Qro., Laboratorio de Investigación en Materiales, Centro Universitario UAQ, Cerro las Campanas s/n C.P. 76010 Querétaro Qro., México
J. M. Yáñez-Limón
Affiliation:
CINVESTAV-Qro., Laboratorio de Investigación en Materiales, Centro Universitario UAQ, Cerro las Campanas s/n C.P. 76010 Querétaro Qro., México
Yuri V. Vorobiev
Affiliation:
CINVESTAV-Qro., Laboratorio de Investigación en Materiales, Centro Universitario UAQ, Cerro las Campanas s/n C.P. 76010 Querétaro Qro., México
J. González-Hernández
Affiliation:
CINVESTAV-Qro., Laboratorio de Investigación en Materiales, Centro Universitario UAQ, Cerro las Campanas s/n C.P. 76010 Querétaro Qro., México
J. M. Hallen
Affiliation:
ESIQUIE Departamento de Ingeniería Metalúrgica, Unidad Profesional A. Lopez Mateos, A:P: 75-373 C.P. 07300 México, D.F.
Get access

Abstract

Effective values of the thermal diffusivity, specific heat, and thermal conductivity of a porous 380-aluminum alloy prepared by melting in a gas-fired furnace, were determined as a function of the volume fraction of porosity. For that, photoacoustic, differential calorimetric, density, and image analyzer measurements were done. Thermal conductivity and specific heat capacity decrease with the increase of porosity, whereas the thermal diffusivity shows less dependence. Among the effective models for analysis of the thermal conductivity of a two-phase system, the Maxwell model best fits the experimental data, implying a homogenous distribution of the pores in the aluminum-alloy matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ruddle, R.W., J. Inst. Metals, 77, 37 (1950).Google Scholar
2.Chandley, D., Adams, C.M. Jr, and Taylor, H.F., AFS Trans. 64, 607 (1955).Google Scholar
3.Flemings, M.C., Uram, S.Z., and Taylor, H.F., AFS Trans. 68, 670 (1960).Google Scholar
4.Passmore, E.M., Flemings, M.C., and Taylor, H.F., AFS Trans. 66, 96 (1958).Google Scholar
5.Uram, S.Z., Fleming, M.C., and Taylor, H.F., AFS Trans. 68, 347 (1960).Google Scholar
6.Jackson, W.J., Brit. Foundryman 50, 211 (1957).Google Scholar
7.Larson, H.R., Lloyd, H.W., and Herlihg, F.B., AFS Trans. 67, 676 (1959).Google Scholar
8.Chamberlain, B. and Sulzer, J., Mod. Castings 46, 600 (1964).Google Scholar
9.Trojan, P.K., Suga, S., Kelto, C., and Flinn, R.A., AFS Trans. 81, 553 (1973).Google Scholar
10.Ostrom, T.R. and Trojan, P.K., AFS Trans. 82, 505 (1974).Google Scholar
11.Young, M.J., AFS Trans. 89, 465 (1981).Google Scholar
12.Herrera, A. and Kondic, V., in Proceedings of the Conference on Solidification and Cast Metals, Sheffield, England (1977), pp. 460465.Google Scholar
13.Surappa, M.K., Blank, E., and Jaquet, J.C., in Proceedings of the Conference Aluminium Technology '86, edited by Sheppard, T. (Inst. of Metals, England, 1986), pp. 498504.Google Scholar
14.Trojan, P.K. and Flinn, R.A., Gases in Cast Metals, Proceedings of the Conference on Cast Metals (The Institute of the American Foundrymen's Society, 1970), p.Google Scholar
15.Leduc, L., Ph.D. Thesis, University of Sheffield, Sheffield, England (1980).Google Scholar
16.Fish, D.J., Ph.D. Thesis, University of Sheffield, Sheffield, England (1973).Google Scholar
17. Interim Report of Subcommittee T.S.45, The British Foundryman Society, February, 1958, pp. 91100.Google Scholar
18.Rooy, E.L., Modern Casting 82, 34 (1992).Google Scholar
19.Maroulis, Z.B., Shah, K.K., and Saravacos, G.D., J. Food Sci. 56, 773 (1991).CrossRefGoogle Scholar
20.Vargas, H. and Miranda, L.C.M, Phys. Rep. 161, 45 (1988).CrossRefGoogle Scholar
21.Bento, A.C., Vargas, H., Aguiar, M.M.F, and Miranda, L.C.M, Phys. Chem. Glasses 28, 127 (1987).Google Scholar
22.Pessoa, O. Jr, César, C.L., Patel, N.A., Vargas, H., Ghizoni, G.C.C, and Miranda, L.C.M, J. Appl. Phys. 59, 1316 (1986).CrossRefGoogle Scholar
23.Neto, A.P., Vargas, H., Leite, N.F., and Miranda, L.C.M, Phys. Rev. B 41, 9971 (1990).CrossRefGoogle Scholar
24.Leite, N.F., Cella, N., Vargas, H., and Miranda, L.C.M, J. Appl. Phys. 61, 3025 (1987).CrossRefGoogle Scholar
25.Torres-Filho, A., Leite, N.F., Cella, N., Vargas, H., and Miranda, L.C.M, J. Appl. Phys. 66, 97 (1989).CrossRefGoogle Scholar
26.Bento, A.C., Gandra, F.C.G, da Silva, E.C., Vargas, H., and Miranda, L.C.M, Phys. Rev. B 45, 5031 (1992).CrossRefGoogle Scholar
27.Lucio, J.L.M, Alvarado-Gil, J.J., Zelaya-Angel, O., and Vargas, H., Phys. Status Solidi A 150, 695 (1995).CrossRefGoogle Scholar
28.Marquezini, M.V., Cella, N., Mansanares, A.M., Vargas, H., and Miranda, L.C.M, Meas. Sci. Technol. 2, 396 (1991).Google Scholar
29.Calderón-Arenas, A., Muñz Hernández, R.A., Tomas, S.A., Orea, A.C., and Sánchez Sinencio, F., J. Appl. Phys. 84, 6327 (1998).CrossRefGoogle Scholar
30.Fred, O., Light Met. Age 1982 (Feb), 1719.Google Scholar
31.Eastwood, L.W., Gases in Metals (American Society of Metals, Cleveland, OH, 1953), p. 23.Google Scholar
32.da Silva, M.D., Bandeira, I.N., Miranda, L.C.M, J. Phys. E: Sci. Instrum. 20, 1476 (1987).Google Scholar
33.Rosencwaig, A. and Gersho, A., J. Appl. Phys. 47, 64 (1976).Google Scholar
34.Kittel, C., Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York, 1986), pp. 106107.Google Scholar
35. ASM Handbook, 9th ed., (ASM International Materials Park, OH), Vol. 2, p. 170.Google Scholar
36.Rosencwaig, A., Photoacoustic and Photoacoustic Spectroscopy (Robert E. Krieger, Malabar, FL, 1990), p. 96.Google Scholar