Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T05:39:10.121Z Has data issue: false hasContentIssue false

Effects of Mo-doping on the microstructure and mechanical properties of CoCrNi medium entropy alloy

Published online by Cambridge University Press:  21 September 2020

Na Li
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083,P.R. China
Ji Gu*
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083,P.R. China
Bin Gan
Affiliation:
Beijing Key Laboratory of Advances High Temperature Materials, Central Iron and Steel Research Institute, Beijing100081, P.R. China
Qiao Qiao
Affiliation:
Beijing Key Laboratory of Advances High Temperature Materials, Central Iron and Steel Research Institute, Beijing100081, P.R. China
Song Ni
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083,P.R. China
Min Song
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083,P.R. China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The CoCrNiMox (x = 0, 0.1, and 0.2 in molar ratio) medium entropy alloys (MEAs) were fabricated by vacuum arc melting, followed by cold rolling and annealing treatments. The X-ray diffraction (XRD), electron back-scattered diffraction (EBSD), and transmission electron microscopy (TEM) were employed to characterize the microstructures. It has been shown that the CoCrNi MEA has a single FCC phase and the Mo-containing MEAs contain (Cr, Mo)-rich σ precipitates. In addition, the Mo addition caused significant grain refinement, due to the fact that the presence of σ phase exerts a strong pinning effect on the grain boundary migration. The hardness testing results indicate an increment in Vickers hardness from 187.5 ± 4.5 Hv of CoCrNi alloy to 309.5 ± 10.3 Hv of CoCrNiMo0.2 alloy. The yield strength and ultimate tensile strength also increase from 339 ± 2 to 644 ± 5 MPa and from 810 ± 5 to 1071 ± 17 MPa, respectively, but the elongation drops from 88.4 ± 4.0% to 29.5 ± 7.6%. The grain refinement and the precipitation of σ phase make synergistic contribution to the reinforcement of Mo-containing CoCrNi-based MEAs. The details and explanations in this study may guide the future design and research of the CoCrNi-based quaternary alloys with enhanced properties.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., and Shun, T.T.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Yeh, J.W.: Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633 (2006).CrossRefGoogle Scholar
Gu, J., Ni, S., Liu, Y., and Song, M.: Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Mater. Sci. Eng. A 755, 289 (2019).CrossRefGoogle Scholar
Xiang, S., Luan, H., Wu, J., Yao, K.F., Li, J., Liu, X., Tian, Y., Mao, W., Bai, H., Le, G., and Li, Q.: Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 773, 387 (2019).CrossRefGoogle Scholar
Shi, Y., Yang, B., and Liaw, P.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Guo, L., Gu, J., Gong, X., Ni, S., and Song, M.: CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening. Sci. China Mater. 63, 288 (2019).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Thurston, K.V., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Ma, Y., Yuan, F., Yang, M., Jiang, P., Ma, E., and Wu, X.: Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater. 148, 407 (2018).CrossRefGoogle Scholar
Yang, M., Yan, D., Yuan, F., Jiang, P., Ma, E., and Wu, X.: Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA 115, 7224 (2018).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).CrossRefGoogle Scholar
Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52, 34 (1940).CrossRefGoogle Scholar
Huang, H., Li, X., Dong, Z., Li, W., Huang, S., Meng, D., Lai, X., Liu, T., Zhu, S., and Vitos, L.: Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 149, 388 (2018).CrossRefGoogle Scholar
Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Zhuang, Y.X., Zhang, X.L., and Gu, X.Y.: Effect of molybdenum on phases, microstructure and mechanical properties of Al0.5CoCrFeMo Ni high entropy alloys. J. Alloys Compd. 743, 514 (2018).CrossRefGoogle Scholar
Guo, Y., Liu, L., Zhang, Y., Qi, J., Wang, B., Zhao, Z., Shang, J., and Xiang, J.: A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J. Mater. Res. 33, 3258 (2018).CrossRefGoogle Scholar
Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).CrossRefGoogle Scholar
Zhang, M., Zhang, L., Liaw, P.K., Li, G., and Liu, R.: Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys. J. Mater. Res. 33, 3276 (2018).CrossRefGoogle Scholar
Rahul, M.R., Samal, S., and Phanikumar, G.: Effect of niobium addition in FeCoNiCuNbx high-entropy alloys. J. Mater. Res. 34, 700 (2019).Google Scholar
Qin, G., Li, Z., Chen, R., Zheng, H., Fan, C., Wang, L., Su, Y., Ding, H., Guo, J., and Fu, H.: CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. J. Mater. Res. 34, 1011 (2019).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., Zhang, Q.J., and Shi, J.: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A 508, 214 (2009).CrossRefGoogle Scholar
Chen, J., Yao, Z., Wang, X., Lu, Y., Wang, X., Liu, Y., and Fan, X.: Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 136 (2018).CrossRefGoogle Scholar
Wang, Z., Baker, I., Cai, Z., Chen, S., Poplawsky, J.D., and Guo, W.: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 120, 228 (2016).CrossRefGoogle Scholar
Song, M., Zhou, R., Gu, J., Wang, Z., Ni, S., and Liu, Y.: Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 18, 100498 (2020).CrossRefGoogle Scholar
Wei, D., Li, X., Schönecker, S., Jiang, J., Choi, W.M., Lee, B.J., Kim, H.S., Chiba, A., and Kato, H.: Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Mater. 181, 318 (2019).CrossRefGoogle Scholar
Chang, R., Fang, W., Bai, X., Xia, C., Zhang, X., Yu, H., Liu, B., and Yin, F.: Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J. Alloys Compd. 790, 732 (2019).CrossRefGoogle Scholar
Li, X., Wei, D., Vitos, L. and Lizárraga, R.: Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWχ high-entropy alloys. J. Alloys Compd. 820, 153141 (2020).CrossRefGoogle Scholar
Jodi, D.E. and Park, N.: Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys. Mater. Lett. 225, 126528 (2019).CrossRefGoogle Scholar
Lee, D., Agustianingrum, M.P., Park, N., and Tsuji, N.: Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy. J. Alloys Compd. 800, 372 (2019).CrossRefGoogle Scholar
Moravcik, I., Hadraba, H., Li, L., Dlouhy, I., Raabe, D., and Li, Z.: Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility. Scr. Mater. 178, 391 (2020).CrossRefGoogle Scholar
Shun, T.T., Chang, L.Y., and Shiu, M.H.: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63 (2012).CrossRefGoogle Scholar
Chang, R., Fang, W., Yu, H., Bai, X., Zhang, X., Liu, B., and Yin, F.: Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity. Scr. Mater. 172, 144 (2019).CrossRefGoogle Scholar
He, J., Makineni, S.K., Lu, W., Shang, Y., Lu, Z., Li, Z., and Gault, B.: On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scr. Mater. 175, 1 (2020).CrossRefGoogle Scholar
Sathiyamoorthi, P., Asghari-Rad, P., Bae, J.W., and Kim, H.S.: Fine tuning of tensile properties in CrCoNi medium entropy alloy through cold rolling and annealing. Intermetallics 113, 106578 (2019).CrossRefGoogle Scholar
Liu, X., Zhang, M., Ma, Y., Dong, W., Li, R., Lu, Y., Zhang, Y., Yu, P., Gao, Y., and Li, G.: Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect. Mater. Sci. Eng. A 776 (2020).CrossRefGoogle Scholar
Wu, W., Wei, B., Ni, S., Liu, Y., and Song, M.: Mechanisms for nucleation and propagation of incoherent twins in a CoCrFeNiMo0.15 high-entropy alloy subject to cold rolling and annealing. Intermetallics 96, 104 (2018).CrossRefGoogle Scholar
Sims, C., Stoloff, N., and Hagel, W.C.: Superalloys II: High Temperature Materials for Aerospace and Industrial Power (John Wiley & Sons, New York, 1987).Google Scholar
Wang, W., Brisset, F., Helbert, A.L., Solas, D., Drouelle, I., Mathon, M.H., and Baudin, T.: Influence of stored energy on twin formation during primary recrystallization. Mater. Sci. Eng. A 589, 112 (2014).CrossRefGoogle Scholar
Cahn, J.W.: The kinetics of grain boundary nucleated reactions. Acta Metall. 4, 449 (1956).CrossRefGoogle Scholar
Nenno, S., Tagaya, M., Hosomi, K., and Nishiyama, Z.: Electron microscope study of sigma phase precipitation in an iron-chromium-nickel alloy. Trans. Jpn. Inst. Met. 4, 222 (1963).CrossRefGoogle Scholar
Lewis, M.H.: Precipitation of (Fe, Cr) sigma phase from austenite. Acta Metall. 14, 1421 (1966).CrossRefGoogle Scholar
Cai, B., Liu, B., Kabra, S., Wang, Y., Yan, K., Lee, P.D., and Liu, Y.: Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction. Acta Mater. 127, 471 (2017).CrossRefGoogle Scholar
Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr. Mater. 137, 88 (2017).CrossRefGoogle Scholar
Wei, R., Sun, H., Han, Z.H., Chen, C., Wang, T., Guan, S.K., and Li, F.S.: Strengthening of Fe40Mn40Co10Cr10 high entropy alloy via Mo/C alloying. Mater. Lett. 219, 85 (2018).CrossRefGoogle Scholar
Bae, J.W., Park, J.M., Moon, J., Choi, W.M., Lee, B-J., and Kim, H.S.: Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys. J. Alloys Compd. 781, 75 (2019).CrossRefGoogle Scholar
Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I: Theoretical. Proc. R. Soc. Lond. A 145, 362 (1934).Google Scholar
Tian, Y.Z., Zhao, L.J., Chen, S., Shibata, A., Zhang, Z.F., and Tsuji, N.: Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes. Sci. Rep. 5, 16707 (2015).CrossRefGoogle ScholarPubMed
Miao, J., Guo, T., Ren, J., Zhang, A., Su, B., and Meng, J.: Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum 149, 324 (2018).CrossRefGoogle Scholar
Cho, K., Fujioka, Y., Nagase, T., and Yasuda, H.Y.: Grain refinement of non-equiatomic Cr-rich CoCrFeMnNi high-entropy alloys through combination of cold rolling and precipitation of σ phase. Mater. Sci. Eng. A 735, 191 (2018).CrossRefGoogle Scholar
Qin, G., Xue, W., Chen, R., Zheng, H., Wang, L., Su, Y., Ding, H., Guo, J., and Fu, H.: Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon. Materialia 6, 100259 (2019).CrossRefGoogle Scholar
Gladman, T.: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999).CrossRefGoogle Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
Ramakrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44, 69 (1996).CrossRefGoogle Scholar
Zhang, Z. and Chen, D.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).CrossRefGoogle Scholar
Hall, E.O.: The deformation and ageing of mild steel: III Discussion of results. J. Proc. Phys. Soc. B 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron. Steel Inst. 174, 25 (1953).Google Scholar