Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T18:16:30.177Z Has data issue: false hasContentIssue false

Effects of interface bonding configuration on photoluminescence of ZnO quantum dots–SiOxNy nanocomposite films

Published online by Cambridge University Press:  31 January 2011

Yu-Yun Peng
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China
Tsung-Eong Hsieh*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China
Chia-Hung Hsu
Affiliation:
Research Division, National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan 300, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocomposite films containing ZnO quantum dots (QDs) and SiOxNy matrix were prepared by target-attached radio frequency sputtering. Photoluminescence (PL) dominated by violet and blue emissions was observed from all ZnO QD–SiOxNy nanocomposite films with dot diameters ranging from 2.77 to 6.65 nm. X-ray photoemission spectroscopy (XPS) revealed the formation of nitrogen-correlated bonding configurations in both the SiOxNy matrix and the dot/matrix interfaces. The nitrogen-correlated configuration at the interface produced a substantial polarization effect at dot surface. The suppression of green-yellow emission observed in photoluminescence spectra of all samples was ascribed to the hole-trapping process promoted by the enhancement of the surface polarization.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Alivisatos, A.P.: Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933 1996CrossRefGoogle Scholar
2Brus, L.E.: A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566 1983CrossRefGoogle Scholar
3Babić, D., Tsu, R.Greene, R.F.: Ground-state energies of one- and two-electron silicon dots in an amorphous silicon dioxide matrix. Phys. Rev. B 45, 14150 1992CrossRefGoogle Scholar
4Iwamatsu, M., Fujiwara, M., Happo, N.Horii, K.: Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer. J. Phys.: Condens. Matter 9, 9881 1997Google Scholar
5Franceschetti, A.Zunger, A.: Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots. Phys. Rev. B 62, 2614 2000CrossRefGoogle Scholar
6Franceschetti, A.Zunger, A.: Addition energies and quasiparticle gap of CdSe nanocrystals. Appl. Phys. Lett. 76, 1731 2000CrossRefGoogle Scholar
7Orlandi, A., Rontani, M., Goldon, G., Manghi, F.Molinari, E.: Single-electron charging in quantum dots with large dielectric mismatch. Phys. Rev. B 63, 045310 2001CrossRefGoogle Scholar
8Bányai, L., Gilliot, P., Hu, Y.Z.Koch, S.W.: Surface-polarization instabilities of electron-hole pairs in semiconductor quantum dots. Phys. Rev. B 45, 14136 1992CrossRefGoogle ScholarPubMed
9Orlandi, A., Goldoni, G., Manghi, F.Molinari, E.: The effect of dielectric polarization-induced surface states on many-body configurations in a quantum dot. Semicond. Sci. Technol. 17, 1302 2002CrossRefGoogle Scholar
10Tkach, N.V.Fartushinski, R.B.: Influence of phonons on the electronic energy spectrum of small semiconductor quantum dots in a dielectric matrix. Phys. Solid State 45, 1347 2003CrossRefGoogle Scholar
11Bsiesy, A., Muller, F., Ligeon, M., Gaspard, F., Hérino, R., Romestain, R.Vial, J.C.: Relation between porous silicon photoluminescence and its voltage-tunable electroluminescence. Appl. Phys. Lett. 65, 3371 1994CrossRefGoogle Scholar
12Linnros, J., Lalic, N., Kánpek, P., Luterová, K., Kočka, J., Fejfar, A.Pelant, I.: Instabilities in electroluminescent porous silicon diodes. Appl. Phys. Lett. 69, 833 1996CrossRefGoogle Scholar
13Collins, R.T., Fauchet, P.M.Tischler, M.A.: Porous silicon: From luminescence to LED. Phys. Today 50, 24 1997CrossRefGoogle Scholar
14Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G.Jensen, K.F.: Full color emission from II-VI semiconductor quantum dot–polymer composites. Adv. Mater. 12, 1102 20003.0.CO;2-J>CrossRefGoogle Scholar
15Selvan, S.T., Bullen, C., Ashokkunar, M.Mulvaney, P.: Synthesis of tunable, highly luminescent QD-glasses through sol-gel processing. Adv. Mater. 13, 985 20013.0.CO;2-W>CrossRefGoogle Scholar
16Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W.Wong, G.: Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem. Mater. 12, 2268 2000CrossRefGoogle Scholar
17Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W.Wong, K.L.: Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl. Phys. Lett. 76, 2901 2000CrossRefGoogle Scholar
18Abdullah, M., Morimoto, T.Okuyama, K.: Generating blue and red luminescence form ZnO/Poly(ethyleneglycol) nanocomposites prepared using in-situ method. Adv. Funct. Mater. 13, 800 2003CrossRefGoogle Scholar
19Das, S., Chakrabarti, S.Chaudhuri, S.: Optical transmission and photoluminescence studies of ZnO–MgO nanocomposite thin films. J. Phys. D: Appl. Phys. 38, 4021 2005CrossRefGoogle Scholar
20Charkrabarti, S., Das, D., Ganguli, D.Chaudhuri, S.: Tailoring of room temperature excitonic luminescence in sol-gel zinc oxide-silica nanocomposite films. Thin Solid Films 441, 228 2004CrossRefGoogle Scholar
21He, H., Wang, Y.Zou, Y.: Photoluminescence property of ZnO–SiO2 composites synthesized by a sol-gel method. J. Phys. D: Appl. Phys. 36, 2972 2003CrossRefGoogle Scholar
22Bang, J., Yang, H.Holloway, H.: Enhanced luminescence of SiO2:Eu3+ by energy transfer form ZnO nanoparticles. J. Chem. Phys. 123, 084709 2005CrossRefGoogle Scholar
23Xiong, L., Shi, J., Gu, J., Li, L., Shen, W.Hua, Z.: Co-templating synthesis of highly dispersed 1D ZnO nanostructures in amorphous SiO2 under hydrothermal conditions. Solid State Sci. 6, 1341 2004CrossRefGoogle Scholar
24Peng, Y-Y., Hsieh, T-E.Hsu, C-H.: White-light emitting ZnO– SiO2 nanocomposite thin films prepared by target-attached sputtering methods. Nanotechnology 17, 174 2006CrossRefGoogle Scholar
25Peng, Y-Y., Hsieh, T-E.Hsu, C-H.: Optical characteristics and microstructure of ZnO quantum dots–SiO2 nanocomposite films prepared by sputtering methods. Appl. Phys. Lett. 89, 211909 2006CrossRefGoogle Scholar
26Major, S., Kumar, S., Bhatnagar, M.Chopra, K.L.: Effect of hydrogen plasma treatment on transparent conducting oxides. Appl. Phys. Lett. 49, 394 1986CrossRefGoogle Scholar
27Dupin, J.C., Gonbeau, D., Vinatier, P.Levasseur, A.: Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319 2000CrossRefGoogle Scholar
28Franke, R., Girgenrath, C., Kohn, S.Jansen, M.: An x-ray photoelectron spectroscopic study of novel SiON glasses. Fresenius J. Anal. Chem. 361, 587 1998CrossRefGoogle Scholar
29Ushio, J., Maruizumi, T.Abdelghafar, K.K.: Interface structures generated by negative-bias temperature instability in Si/SiO2 and Si/SiOxNy interfaces. Appl. Phys. Lett. 81, 1818 2002CrossRefGoogle Scholar
30Shinagawa, S., Nohira, H., Ikuta, T., Hori, M., Kase, M.Hattori, T.: Angle-resolved XPS study on chemical bonds in ultrathin silicon oxynitride films. Microelectron. Eng. 80, 98 2005CrossRefGoogle Scholar
31Kim, J.W., Yeom, H.W., Chung, Y.D., Jeong, K.Whang, C.N.: Chemical configuration of nitrogen in ultrathin Si oxynitride on Si(100). Phys. Rev. B 66, 035312 2002CrossRefGoogle Scholar
32Kobayashi, H., Mixokuro, T., Nakato, Y., Yoneda, K.Todokoro, Y.: Nitridation of silicon-oxide layers by nitrogen plasma generated by low-energy electron impact. Appl. Phys. Lett. 71, 1978 1997CrossRefGoogle Scholar
33Chang, J.P., Green, M.L., Donnelly, V.M., Opila, R.L., Eng, J. Jr., Sapjeta, J., Lu, H.C., Gustafsson, T.Garfunkel, E.: Profiling nitrogen in ultrathin silicon oxynitrides with angle-resolved x-ray photoelectron spectroscopy. J. Appl. Phys. 87, 4449 2000CrossRefGoogle Scholar
34Futsuhara, M., Yoshioka, K.Takai, O.: Optical properties of zinc oxynitride thin films. Thin Solid Films 317, 322 1998CrossRefGoogle Scholar
35Futsuhara, M., Yoshioka, K.Takai, O.: Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274 1998CrossRefGoogle Scholar
36Thonke, K., Gruber, T., Trofilov, N., Schönfelder, R., Waag, A.Sauer, R.: Donor-acceptor pair transitions in ZnO substrate material. Physica B (Amsterdam) 308, 945 2001CrossRefGoogle Scholar
37Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., REshchikov, M.A., Doğan, S., Avrutin, V., Cho, S–J.Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 2005CrossRefGoogle Scholar
38Cerofolini, G.F., Caricato, A.P., Meda, L., Re, N.Sgamellotti, A.: Quantum-mechanical study of nitrogen bonding configurations at the nitrided Si–SiO2 interface via model molecules. Phys. Rev. B 61, 14157 2000CrossRefGoogle Scholar
39Rignanese, G-M., Pasquarello, A., Charlier, J-C., Gonze, X.Car, R.: Nitrogen incorporation at Si(001)–SiO2 interfaces: Relation between N 1s core-level shifts and microscopic structure. Phys. Rev. Lett. 79, 5174 1997CrossRefGoogle Scholar
40Bányai, L., Gilliot, P., Hu, Y.Z.Koch, S.W.: Surface-polarization instabilities of electron-hole pairs in semiconductor quantum dots. Phys. Rev. B 45, 14136 1992CrossRefGoogle ScholarPubMed
41Dijken, A.V., Meulenkamp, E.A., Van Maekelbergh, D.Meijerink, A.: The luminescence of nanocrystalline ZnO particles: The mechanism of the ultraviolet and visible emission. J. Lumin. 87, 454 2000CrossRefGoogle Scholar