Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:02:42.716Z Has data issue: false hasContentIssue false

Effects of grain boundary and boundary inclination on hydrogen diffusion in α-iron

Published online by Cambridge University Press:  06 September 2011

Xiaoyang Liu
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
Wenbo Xie
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
Weixing Chen
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
Hao Zhang*
Affiliation:
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Diffusion of interstitial hydrogen atoms in α-iron was investigated using molecular dynamic simulation. In particular, hydrogen diffusivities in bulk, on (001) surface and within a Σ5 [100]/(013) symmetric tilt grain boundary (STGB) were estimated in a temperature range of 400 and 700 K. Furthermore, hydrogen diffusivities in a series of Σ5 [100] tilt grain boundaries with different inclinations were also determined as a function of temperature. The inclination dependence of activation energy for diffusion exhibits two local maxima, which correspond to two STGBs. Additional calculation of inclination dependence of boundary energy and boundary specific excess volume shows two local minima at the same STGBs. This suggests hydrogen diffusion into and within a grain boundary might be assisted by grain boundary excess volume and stress. Simulation of effects of hydrostatic pressure on diffusion shows tensile stress can promote hydrogen diffusion in lattice into grain boundary or surface traps, while compressive stress leads to a decrease in diffusivity, and a slower rate of filling these traps.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Steigerwald, E.A., Schaller, F.W., and Troiano, A.R.: The role of stress in hydrogen induced delayed failure. Trans. Am. Inst. Min. Metall. Eng. 218, 832 (1960).Google Scholar
2.Oriani, R.A.: Hydrogen-induced crack-propagation in steels. Bull. Am. Phys. Soc. 19, 219 (1974).Google Scholar
3.Lynch, S.P.: Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 36, 2639 (1988).CrossRefGoogle Scholar
4.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K.: Influence of hydrogen on the stacking-fault energy of an austenitic stainless steel. Mater. Sci. Forum 207209, 93 (1996).CrossRefGoogle Scholar
5.Teter, D.F., Robertson, I.M., and Birnbaum, H.K.: The effects of hydrogen on the deformation and fracture of β-titanium. Acta Mater. 49, 4313 (2001).CrossRefGoogle Scholar
6.Chen, W., Kania, R., Worthingham, R., and Van Boven, G.: Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: The role of hydrogen. Acta Mater. 57, 6200 (2009).CrossRefGoogle Scholar
7.Vennett, R.M. and Ansell, G.S.: Effect of high-pressure hydrogen upon tensile properties and fracture behavior of 304L stainless steel. ASM Trans. Q 60, 242 (1967).Google Scholar
8.Han, G., He, J., Fukuyama, S., and Yokogawa, K.: Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater. 46, 4559 (1998).CrossRefGoogle Scholar
9.Toplosky, J. and Ritchie, R.O.: On the influence of gaseous hydrogen in decelerating fatigue crack growth rates in ultrahigh strength steels. Scr. Metall. Mater. 15, 905 (1981).CrossRefGoogle Scholar
10.Hirth, J.P.: 1980 Institute of Metals Lecture: The Metallurgical Society of AIME—Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11, 861 (1980).CrossRefGoogle Scholar
11.Asaoka, T., Daggbert, C., Aucouturier, M., and Galland, J.: Quantitative study on capture of hydrogen in Ferrit Fe-0.15%-Ti using high-resolution autoradiography and degassing at different temperatures. Scr. Metall. Mater. 11, 467 (1977).CrossRefGoogle Scholar
12.Asaoka, T., Lapasset, G., Aucouturier, M., and Lacombe, P.: Observation of hydrogen trapping in Fe-0.15wt% Ti alloy by high-resolution autoradiography. Corrosion 34, 39 (1978).CrossRefGoogle Scholar
13.Lee, J.Y. and Lee, S.M.: Hydrogen trapping phenomena in metals with BCC and FCC crystal structures by the desorption thermal analysis technique. Surf. Coat. Tech. 28, 301 (1986).CrossRefGoogle Scholar
14.Addach, H., Bercot, P., Rezrazi, M., and Wery, M.: Hydrogen permeation in iron at different temperatures. Mater. Lett. 59, 1347 (2005).CrossRefGoogle Scholar
15.Castellote, M., Fullea, J., de Viedma, P.G., Andrade, C., Alonso, C., Llorente, I., Turrillas, X., Campo, J., Schweitzer, J.S., Spillane, T., Livingston, R.A., Rolfs, C., and Becker, H-W.: Hydrogen embrittlement of high-strength steel submitted to slow strain rate testing studied by nuclear resonance reaction analysis and neutron diffraction. Nucl. Instrum. Meth. B 259, 975 (2007).CrossRefGoogle Scholar
16.Westlake, D.G.: A generalized model for hydrogen embrittlement. ASM Trans. Q 62, 1000 (1969).Google Scholar
17.Gest, R.J. and Troiano, A.R.: Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion 30, 274 (1974).CrossRefGoogle Scholar
18.Birnbaum, H.K., and Sofronis, P.: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mat. Sci. Eng., A 176, 191 (1994).CrossRefGoogle Scholar
19.Sofronis, P. and Birnbaum, H.K.: Mechanics of the hydrogen-dislocation-impurity interactions. 1. Increasing shear modulus. J. Mech. Phys. Solids 43, 49 (1995).CrossRefGoogle Scholar
20.Takai, K., Shoda, H., Suzuki, H., and Nagumo, M.: Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 56, 5158 (2008).CrossRefGoogle Scholar
21.Ramasubramaniam, A., Itakura, M., and Carter, E.A.: Interatomic potentials for hydrogen in α-iron based on density functional theory. Phys. Rev. B 79, 174101 (2009).CrossRefGoogle Scholar
22.Desai, S.K., Neeraj, T., and Gordon, P.A.: Atomistic mechanism of hydrogen trapping in bcc Fe–Y solid solution: A first principles study. Acta Mater. 58, 5363 (2010).CrossRefGoogle Scholar
23.Movchan, D.N., Shyvanyuk, V.N., Shanina, B.D., and Gavriljuk, V.G.: Atomic interactions and hydrogen-induced γ* phase in fcc iron–nickel alloys. Phys. Status Solidi A 207, 1796 (2010).CrossRefGoogle Scholar
24.Yamaguchi, M., Ebihara, K.I., Itakura, M., Kadoyoshi, T., Suzudo, T., and Kaburaki, H.: First-principles study on the grain boundary embrittlement of metals by solute segregation: Part II. Metal (Fe, Al, Cu)-hydrogen (H) systems. Metall. Mater. Trans. A 42A, 330 (2011).CrossRefGoogle Scholar
25.Wen, M., Fukuyama, S., and Yokogawa, K.: Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767 (2003).CrossRefGoogle Scholar
26.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic study of hydrogen distribution and diffusion around a {112} <111> edge dislocation in alpha iron. Acta Mater. 56, 3761 (2008).CrossRefGoogle Scholar
27.Hyde, B., Farkas, D., and Caturla, M.J.: Atomistic sliding mechanisms of the Sigma = 5 symmetric tilt grain boundary in bcc iron. Philos. Mag. 85, 3795 (2005).CrossRefGoogle Scholar
28.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in alpha iron. Int. J. Mech. Sci. 52, 334 (2010).CrossRefGoogle Scholar
29.Matsumoto, R., Taketomi, S., Matsumoto, S., and Miyazaki, N.: Atomistic simulations of hydrogen embrittlement. Int. J. Hydrogen Energy 34, 9576 (2009).CrossRefGoogle Scholar
30.Manchester, F.D.: Precepts and prospects for phase diagrams of M–H systems. J. Alloy. Compd. 330, 8 (2002).CrossRefGoogle Scholar
31.Gottstein, G. and Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (Taylor & Francis, Boca Raton, 2010).Google Scholar
32.Zhang, H., Mendelev, M.I., and Srolovitz, D.J.: Mobility of Sigma 5 tilt grain boundaries: Inclination dependence. Scr. Mater. 52, 1193 (2005).CrossRefGoogle Scholar
33.Parrinello, M. and Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
34.Nose, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
35.Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
36.Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977 (2003).CrossRefGoogle Scholar
37.Ackland, G.J., Mendelev, M.I., Srolovitz, D.J., Han, S., and Barashev, A.V.: Development of an interatomic potential for phosphorus impurities in alpha-iron. J. Phys. Condens. Matter 16, S2629 (2004).CrossRefGoogle Scholar
38.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
39.Daniel, J.W.: Convergence of conjugate gradient method with computationally convenient modifications. Numer. Math. 10, 125 (1967).CrossRefGoogle Scholar
40.Sachdev, S. and Nelson, D.R.: Order in metallic glasses and icosahedral crystals. Phys. Rev. B 32, 4592 (1985).CrossRefGoogle ScholarPubMed
41.Borodin, V.A.: Local atomic arrangements in polytetrahedral materials. Philos. Mag. A 79, 1887 (1999).CrossRefGoogle Scholar
42.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
43.Brostow, W., Chybicki, M., Laskowski, R., and Rybicki, J.: Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 57, 13448 (1998).CrossRefGoogle Scholar
44.Rycroft, C.H., Grest, G.S., Landry, J.W., and Bazant, M.Z.: Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 74, 021306 (2006).CrossRefGoogle Scholar
45.Shewmon, P.G.: Surface diffusion from a point source. J. Appl. Phys. 34, 755 (1963).CrossRefGoogle Scholar
46.Riecke, E., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 1. Permeation, diffusion and solubility of hydrogen in binary iron alloys. Werkst. Korros. 36, 435 (1985).CrossRefGoogle Scholar
47.Riecke, E., Moller, R., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 2. Corrosion and formation of surface layers. Werkst. Korros. 36, 447 (1985).CrossRefGoogle Scholar
48.Riecke, E., Johnen, B., and Grabke, H.J.: Effects of alloying elements on corrosion and hydrogen uptake of iron in sulfuric acid. 3. Kinetics of proton discharge and hydrogen uptake at binary iron alloys. Werkst. Korros. 36, 455 (1985).CrossRefGoogle Scholar
49.Beck, W., Bockris, J.O.M., Mcbreen, J., and Nanis, L.: Hydrogen permeation in metals as a function of stress temperature and dissolved hydrogen concentration. Proc. R. Soc. London, Ser. A 290, 220 (1966).Google Scholar
50.Heumann, T. and Domke, E.: Hydrogen diffusion in zone melted α-iron. Ber. Bunsen. Ges. 76, 825 (1972).CrossRefGoogle Scholar
51.Quick, N.R. and Johnson, H.H.: Hydrogen and deuterium in iron, 49–506 °C. Acta Metall. 26, 903 (1978).CrossRefGoogle Scholar
52.Riecke, E. and Bohnenkamp, K.: On the influence of lattice imperfections in iron on hydrogen diffusion. Z. Metallk. 75, 76 (1984).Google Scholar
53.Gesari, S.B., Pronsato, M.E., and Juan, A.: The electronic structure and bonding of H pairs at Sigma = 5 BCCFe grain boundary. Appl. Surf. Sci. 187, 207 (2002).CrossRefGoogle Scholar
54.Kishi, A. and Takano, N.: Effect of hydrogen cathodic charging on fatigue fracture of type 310S stainless steel. J. Phys. Conf. Ser. 240, 012050 (2010).CrossRefGoogle Scholar
55.Zhang, L., An, B., Fukuyama, S., Iijima, T., and Yokogawa, K.: Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation. J. Appl. Phys. 108, 063526 (2010).CrossRefGoogle Scholar
56.Strnadel, B.: Failure of steels caused by hydrogen induced microcracking. Eng. Fract. Mech. 61, 299 (1998).CrossRefGoogle Scholar
57.Kang, Y.W., Chen, W.X., Kania, R., Van Boven, G., and Worthingham, R.: Simulation of crack growth during hydrostatic testing of pipeline steel in near-neutral pH environment. Corros. Sci. 53, 968 (2011).CrossRefGoogle Scholar