Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:03:14.304Z Has data issue: false hasContentIssue false

Effects of composition on the microstructure of YBa2Cu3O7−x thin films prepared by plasma-enhanced metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

P. Lu
Affiliation:
Department of Mechanics and Materials Science, Rutgers University, Piscataway, New Jersey 08855
J. Zhao
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, New Jersey 08873
C.S. Chern
Affiliation:
Department of Mechanics and Materials Science, Rutgers University, Piscataway, New Jersey 08855
Y.Q. Li
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
G.A. Kulesha
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
B. Gallois
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
P. Norris
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, New Jersey 08873
B. Kear
Affiliation:
Department of Mechanics and Materials Science, Rutgers University, Piscataway, New Jersey 08855
F. Cosandey
Affiliation:
Department of Mechanics and Materials Science, Rutgers University, Piscataway, New Jersey 08855
Get access

Abstract

The microstructures of (A) near stoichiometric, (B) Y-rich, and (C) Y- and Cu-rich YBa2Cu3O7−x thin films have been studied by high-resolution transmission electron microscopy. The films were deposited on (100) LaAlO3 by plasma-enhanced metalorganic chemical vapor deposition. In near stoichiometric films, microstructural features similar to those of thin films deposited by other techniques have been observed. These features which include epitaxial growth with the c-axis perpendicular to the substrate, twin boundaries on (110) planes, and stacking faults on (100) and (001) planes were also present in the off-stoichiometric materials. In Y-rich thin films, yttria (Y2O3) precipitates with an average size of about 5 nm have been identified in the matrix. The precipitates are uniformly distributed, have a high density as large as 1024/m3, and are highly oriented with respect to the matrix. In Y- and Cu-rich thin films, CuO particles up to 1 μm in size were observed on the surfaces of the films. The observed microstructural features were similar to those of the Y-rich materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matsuno, S., Uchikawa, F., and Yoshizaki, K., Jpn. J. Appl. Phys. 29, L947 (1990).CrossRefGoogle Scholar
2.Li, Y. Q., Zhao, J., Chem, C. S., Huang, W., Kulesha, G. A., Lu, P., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Appl. Phys. Lett. 58, 648 (1991).CrossRefGoogle Scholar
3.Zhao, J., Li, Y. Q., Chern, C. S., Huang, W., Lu, P., Gallois, B., Kear, B., Cosandey, F., Wu, X. D., Muenchausen, R. E., and Garrison, S., Appl. Phys. Lett. 59, 1254 (1991).CrossRefGoogle Scholar
4.Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J. M., and Wilkens, B., Appl. Phys. Lett. 52, 754 (1989).CrossRefGoogle Scholar
5.Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S. S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
6.Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
7.Marshall, A. F., Char, K., Barton, R. W., Kapitulnik, A., and Laderman, S. S., J. Mater. Res. 5, 2049 (1990).CrossRefGoogle Scholar
8.Ramesh, R., Hwang, D. M., Barner, J. B., Nazar, L., Ravi, T. S., Inam, A., Dutta, B., Wu, X. D., and Venkatesan, T., J. Mater. Res. 5, 704 (1990).CrossRefGoogle Scholar
9.Geerk, J., Linker, G., and Meyer, O., Mater. Sri. Rep. 4, 193 (1989).CrossRefGoogle Scholar
10.Hawley, M., Raistrick, I. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991).CrossRefGoogle Scholar
11.Marshall, A. F., Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R., and Beasley, M. R., Appl. Phys. Lett. 57, 1158 (1990).CrossRefGoogle Scholar
12.Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res. 6, 682 (1991).CrossRefGoogle Scholar
13.Watanabe, K., Matsushita, T., Kobayashi, N., Kawabe, H., Aoyagi, E., Hirga, K., Yamane, H., Kurosawa, H., Hirai, T., and Muto, Y., Appl. Phys. Lett. 56, 1490 (1990).CrossRefGoogle Scholar
14.Eibl, O. and Roas, B., J. Mater. Res. 5, 2620 (1990).CrossRefGoogle Scholar
15.Hylton, T. H. and Beasley, M. R., Phys. Rev. B 41, 11669 (1990).CrossRefGoogle Scholar
16.Zhao, J., Chern, C. S., Li, Y. Q., Norris, P., Gallois, B., Kear, B., Wu, X. D., and Muenchausen, R. E., Appl. Phys. Lett. 58, 2839 (1991).CrossRefGoogle Scholar
17.Li, Y. Q., Zhao, J., Chern, C. S., Lu, P., Kulesha, G. A., Gallois, B., Norris, P., Kear, B., and Cosandey, F., unpublished.Google Scholar
18.Lu, P., Li, Y. Q., Zhao, J., Chern, C. S., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Appl. Phys. Lett. 60, 1265 (1992).CrossRefGoogle Scholar
19.Zhao, J., Noh, D. W., Chern, C. S., Li, Y. Q., Norris, P., Gallois, B., and Kear, B., Appl. Phys. Lett. 56, 2342 (1990).CrossRefGoogle Scholar
20.Chern, C. S., Zhao, J., Li, Y. Q., Norris, P., Gallois, B., and Kear, B., Appl. Phys. Lett. 57, 721 (1990).CrossRefGoogle Scholar
21.Carim, A. H., Basu, S. N., and Muenchausen, R. E., Appl. Phys. Lett. 58, 871 (1991).CrossRefGoogle Scholar
22.Basu, S. N., Carim, A. H., and Mitchell, T. E., J. Mater. Res. 6, 1823 (1991).CrossRefGoogle Scholar
23.Zandbergen, H. W., Gronsky, R., and Thomas, G., Phys. Status Solidi (a) 105, 207 (1988).CrossRefGoogle Scholar
24.Roth, R. S. and Schneider, S. J., J. Res. NBS 64A, 309 (1960).CrossRefGoogle Scholar
25.Ahn, B. T., Lee, V. Y., Beyers, R., Gur, T. M., and Huggins, R. A., Physica C 169, 529 (1990).CrossRefGoogle Scholar
26.Beyers, R. and Ahn, B. T., Annu. Rev. Mater. Sci. 21, 335 (1991).CrossRefGoogle Scholar
27.Vahlas, C. and Besmann, T. M., unpublished.Google Scholar
28.Li, Y. Q., Ph.D. Thesis, Stevens Institute of Technology, 1991.Google Scholar