Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T06:54:48.877Z Has data issue: false hasContentIssue false

Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy

Published online by Cambridge University Press:  05 December 2016

Wenqian Wu
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Song Ni
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Yong Liu
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Min Song*
Affiliation:
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The microstructural evolution of a HfNbTaTiZr high-entropy alloy subjected to cold rolling and subsequent annealing was investigated. The dislocation activity dominates the deformation process. The microstuctural evolution of the alloy during cold rolling can be described as follows: (i) formation of dislocation tangles, (ii) formation of microbands, (iii) formation of thin laths and microshear bands containing thin laths, (iv) the transverse breakdown of the lath to elongated segment, and (v) formation of fine grains. During annealing at 800 and 1000 °C, decomposition of the metastable high-temperature body-centered cubic phase proceeded through a phase separation reaction. Annealing at 800 °C resulted in a nonrecrystallized microstructure with abundant second-phase particles distributed randomly. The second-phase particles with an average size of ∼145 nm were enriched in Ta and Nb, while the chemical composition of the matrix was close to the average composition of the alloy. Meanwhile, an unknown phase slightly enriched in Hf, Zr, and Ti was detected in the interfacial region between the second-phase particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299 (2004).Google Scholar
Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).Google Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19(6), 349 (2016).Google Scholar
Wu, Y.D., Cai, Y.H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., and Hui, X.D.: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).Google Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153 (2014).Google Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys. Acta Mater. 59(16), 6308 (2011).Google Scholar
Tang, Z., Huang, L., He, W., and Liaw, P.: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16(2), 895 (2014).Google Scholar
Chou, Y.L., Wang, Y.C., Yeh, J.W., and Shih, H.C.: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52(10), 3481 (2010).Google Scholar
Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).Google Scholar
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3(1), 1 (2014).Google Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3(2), 95 (2014).Google Scholar
Yeh, J.W.: Recent progress in high-entropy alloys. Ann. Chim.-Sci. Mat. 31(6), 633 (2006).Google Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2(3), 107 (2014).Google Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, 2015).Google Scholar
Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47(7), 3322 (2016).Google Scholar
Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68(7), 526 (2013).Google Scholar
Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).Google Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).Google Scholar
Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).Google Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509(20), 6043 (2011).Google Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47(9), 4062 (2012).CrossRefGoogle Scholar
Senkov, O.N. and Semiatin, S.L.: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110 (2015).Google Scholar
Pennycook, S.J. and Nellist, P.D.: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011).Google Scholar
Li, Z.J., Godfrey, A., and Liu, Q.: Evolution of microstructure and local crystallographic orientations in rolled Al–1% Mn single crystals of {001}〈110〉 orientation. Acta Mater. 52(1), 149 (2004).Google Scholar
Wert, J., Liu, Q., and Hansen, N.: Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal. Acta Mater. 45(6), 2565 (1997).Google Scholar
Yang, D.K., Cizek, P., Hodgson, P.D., and Wen, C.E.: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Mater. 58(13), 4536 (2010).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 103505 (2011).Google Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534 (2008).Google Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21(6), 433 (2011).Google Scholar
Hughes, D.: Microstructural evolution in a non-cell forming metal: Al–Mg. Acta Metall. Mater. 41(5), 1421 (1993).Google Scholar
Hughes, D. and Hansen, N.: Microstructural evolution in nickel during rolling and torsion. Mater. Sci. Technol. 7(6), 544 (1991).Google Scholar
Hughes, D., Hansen, N., and Bammann, D.: Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 48(2), 147 (2003).CrossRefGoogle Scholar
Kuhlmann-Wilsdorf, D. and Hansen, N.: Geometrically necessary, incidental and subgrain boundaries. Scr. Metall. Mater. 25(7), 1557 (1991).Google Scholar
Li, B.L., Godfrey, A., Meng, Q.C., Liu, Q., and Hansen, N.: Microstructural evolution of IF-steel during cold rolling. Acta Mater. 52(4), 1069 (2004).Google Scholar
Xue, Q., Cerreta, E.K., and Gray, G.T.I.: Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel. Acta Mater. 55(2), 691 (2007).Google Scholar
Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., and Lu, J.: Nanostructure formation mechanism of alpha-titanium using SMAT. Acta Mater. 52(14), 4101 (2004).Google Scholar
Xue, Q. and Gray, G.T.I.: Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall. Mater. Trans. A 37(8), 2447 (2006).Google Scholar
Afonso, C.R., Ferrandini, P.L., Ramirez, A.J., and Caram, R.: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti–35Nb–7Zr–5Ta alloy for implant applications. Acta Biomater. 6(4), 1625 (2010).Google Scholar
Senkov, O., Senkova, S., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).Google Scholar