Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:33:52.888Z Has data issue: false hasContentIssue false

Effects of bonding structure on the properties of plasma immersion ion processed diamondlike carbon films

Published online by Cambridge University Press:  31 January 2011

X. M. He
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico, 87545, USA
K. C. Walter
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico, 87545, USA
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico, 87545, USA
Get access

Abstract

Hydrogenated diamondlike carbon (a-C:H DLC) films were prepared on different substrates by using C2H2–Ar plasma immersion ion processing (PIIP), and their bonding structure was modified by changing deposition parameters of the chamber pressure and the gas composition. The influence of the bonding structure on the properties of the DLC films was investigated by using ion-beam analysis techniques and Raman, infrared, and ultraviolet/visible spectroscopies and by analyzing the measured properties. The increases in density, hardness, and refractive index were found to correlate with the increase of the sp3-bonded structure and the concurrent decrease of both the C–H bonds and the average size of sp2-bonded domains in the films. An optimal combination of optical and mechanical properties was highly dependent on the hydrogen status existing in DLC films that can be adjusted by means of modulation of the synthesis parameters. The prepared DLC films exhibited desirable properties, which included a hardness above 28 GPa, a density above 2.3 g cm−3, a refractive index above 1.94, and band gap energies in the range of 1.8–1.85 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neuville, S. and Matthews, A., MRS Bull. 22(9), 22 (1997).CrossRefGoogle Scholar
2.Angus, J.C., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (Chemical Rubber, Boca Raton, FL, 1988), p. 89;Google Scholar
Diamond and Diamond-Like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Koidl, P. (Plenum, New York, 1991).CrossRefGoogle Scholar
3.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
4.Grill, A., Surf. Coat. Technol. 94–95, 507 (1997).CrossRefGoogle Scholar
5.Gerstner, E.G. and McKenzie, D.R., Diamond Relat. Mater. 7, 1172 (1998).CrossRefGoogle Scholar
6.Morosanu, C.O., Stoica, T., De Martino, C., Demichelis, F., and Tagliaferro, A., Diamond Relat. Mater. 3, 814 (1994).CrossRefGoogle Scholar
7.Rej, D.J., Handbook of Thin Film Process Technology (Institute of Physics, Philadelphia, PA, 1996), Chap. E2.3.Google Scholar
8.Tuszewski, M., Henins, I., Nastasi, M., Scarborough, W.K., Walter, K.C., and Lee, D.H., IEEE Trans. Plasma Sci. 26, 1653 (1998).CrossRefGoogle Scholar
9.Lee, D.H., He, X.M., Walter, K.C., Nastasi, M., Tesmer, J.R., Tuszewski, M., and Tallant, D.R., Appl. Phys. Lett. 73, 2423 (1998).CrossRefGoogle Scholar
10.He, X.M., Lee, D.H., Walter, K.C., Li, D.Q., and Nastasi, M., J. Mater. Res. 14, 2080 (1999).CrossRefGoogle Scholar
11.Rusli, , Yoon, S.F., Yang, H., Zhang, Q., Ahn, J., and Fu, Y.L., J. Vac. Sci. Technol. A16, 572 (1998).CrossRefGoogle Scholar
12.He, X.M., Walter, K.C., Nastasi, M., Lee, S.T., and Sun, X.S., Thin Solid Films 355–356, 167 (1999).CrossRefGoogle Scholar
13.Doolittle, L.R., Nucl. Instrum. Methods B9, 344 (1985); B15, 227 (1986).CrossRefGoogle Scholar
14.Tamor, M.A. and Vassell, W.C., J. Appl. Phys. 76, 3823 (1994).CrossRefGoogle Scholar
15.McCulloch, D.G., Prawer, S., and Hoffman, A., Phy. Rev. B50, 5909 (1994).Google Scholar
16.Zhang, X., Weber, W.H., Vassell, W.C., Potter, T.J., and Tamor, M.A., J. Appl. Phys. 83, 2820 (1998).CrossRefGoogle Scholar
17.Nagai, I., Ishitani, A., Kuroda, H., Yoshikawa, M., and Nagai, N., J. Appl. Phys. 67, 2890 (1990).CrossRefGoogle Scholar
18.Seo, S.C., Ingram, D.C., and Richardson, H.H., J. Vac. Sci. Technol. A13, 2856 (1995).CrossRefGoogle Scholar
19.Adel, M.E., Amri, O., Kalish, R., and Feldman, L.C., J. Appl. Phys. 66, 3248 (1989).CrossRefGoogle Scholar
20.Silva, S.R.P, Robertson, J., Rusli, , Amaratunga, G.A.J, and Schwan, J., Philos. Mag. B74, 369 (1996).CrossRefGoogle Scholar
21.Ager, J.W., IEEE Trans. Magn. MAG–29, 259 (1993).CrossRefGoogle Scholar
22.Uhlmann, S., Frauenheim, Th., and Lifshitz, Y., Phys. Rev. Lett. 81, 641 (1998).CrossRefGoogle Scholar
23.Ion-Solid Interactions: Fundamentals and applications, edited by Nastasi, M., Mayer, J.W., and Hirvonen, J.K. (Cambridge University Press, Cambridge, United Kingdom, 1996), Chap. 13.CrossRefGoogle Scholar
24.Zhang, Q., Yoon, S.F., Rusli, , Ahn, J., Ynag, H., and Bahr, D., J. Appl. Phys. 84, 5538 (1998).CrossRefGoogle Scholar
25.He, X.M., Bardeau, J-F., Walter, K.C., and Nastasi, M., J. Vac. Sci. Technol. A17, 2525 (1999).CrossRefGoogle Scholar