Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T10:37:13.108Z Has data issue: false hasContentIssue false

The effect of various transition metals on glass formation in ternary La-TM-Al (TM = Co, Ni, Cu) alloys

Published online by Cambridge University Press:  01 April 2011

H. Yang
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
X. Li
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
Y. Li*
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The optimum glass formers in ternary La-TM-Al (TM = Co, Ni, Cu) alloys were pinpointed at alloys La69Co17Al14, La66Ni19Al15, and La66Cu20Al14, exhibiting critical sizes for full glass formation of 16, 12, and 5 mm, respectively. Cobalt is found to be the most favorable element for glass formation in La-based alloys. The optimum alloys in La-TM-Al show close composition but significantly different glass-forming ability (GFA). The mechanism of distinct effect of TM elements remains unclear, even discussed based on current GFA-related criteria and indicators.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Kohinata, M., An-Pang, T., and Masumoto, T.: Mg-Ni-La amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 30, 378 (1989).CrossRefGoogle Scholar
2.Inoue, A., Nakamura, T., Sugita, T., Zhang, T., and Masumoto, T.: Bulky La-Al-Tm (Tm = transition-metal) amorphous-alloys with high-tensile strength produced by a high-pressure die-casting method. Mater. Trans. JIM 34, 351 (1993).CrossRefGoogle Scholar
3.Lu, Z.P., Goh, T.T., Li, Y., and Ng, S.C.: Glass formation in La-based La-Al-Ni-Cu-(Co) alloys by Bridgman solidification and their glass forming ability. Acta Mater. 47, 2215 (1999).CrossRefGoogle Scholar
4.Tan, H., Zhang, Y., Ma, D., Feng, Y.P., and Li, Y.: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu, Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003).CrossRefGoogle Scholar
5.Li, R., Pang, S.J., Men, H., Ma, C.L., and Zhang, T.: Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability. Scr. Mater. 54, 1123 (2006).CrossRefGoogle Scholar
6.Jiang, Q.K., Zhang, G.Q., Yang, L., Wang, X.D., Saksl, K., Franz, H., Wunderlich, R., Fecht, H., and Jiang, J.Z.: La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater. 55, 4409 (2007).CrossRefGoogle Scholar
7.Li, R., Pang, S.J., Ma, C.L., and Zhang, T.: Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Mater. 55, 3719 (2007).CrossRefGoogle Scholar
8.Li, R., Liu, F.J., Pang, S., Ma, C.L., and Zhang, T.: The influence of similar element coexistence in (La-Ce)-Al-(Co-Cu) bulk metallic glasses. Mater. Trans. 48, 1680 (2007).CrossRefGoogle Scholar
9.Saotome, Y., Hatori, T., Zhang, T., and Inoue, A.: Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state. Mater. Sci. Eng. A 304, 716 (2001).CrossRefGoogle Scholar
10.Tan, H., Lu, Z.P., Yao, H.B., Yao, B., Feng, Y.P., and Li, Y.: Glass forming ability of La-rich La-Al-Cu ternary alloys. Mater. Trans. 42, 551 (2001).CrossRefGoogle Scholar
11.Inoue, A., Zhang, T., and Matsumoto, A.: Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. Trans. JIM 31, 425 (1990).CrossRefGoogle Scholar
12.Jiang, Q.K., Zhang, G.Q., Chen, L.Y., Zeng, Q.S., and Jiang, J.Z.: Centimeter-sized (La0.5Ce0.5)-based bulk metallic glasses. J. Alloy. Comp. 424, 179 (2006).CrossRefGoogle Scholar
13.Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
14.Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
15.Li, R., Yang, Q., Pang, S.J., Ma, C.L., and Zhang, T.: Misch metal based metallic glasses. J. Alloy. Comp. 450, 181 (2008).CrossRefGoogle Scholar
16.Chen, D., Takeuchi, A., and Inoue, A.: Gd-Co-Al and Gd-Ni-Al bulk metallic glasses with high glass forming ability and good mechanical properties. Mater. Sci. Eng. A 457, 226 (2007).CrossRefGoogle Scholar
17.Chen, D., Takeuchi, A., and Inoue, A.: Thermal stability and magnetic properties of Gd-Fe-Al bulk amorphous alloys. J. Alloy. Comp. 440, 199 (2007).CrossRefGoogle Scholar
18.Wada, T., Qin, F.X., Wang, X.M., Yoshimura, M., Inoue, A., Sugiyama, N., Ito, R., and Matsushita, N.: Formation and bioactivation of Zr-Al-Co bulk metallic glasses. J. Mater. Res. 24, 2941 (2009).CrossRefGoogle Scholar
19.Jing, Q., Zhang, Y., Wang, D., and Li, Y.: A study of the glass forming ability in ZrNiAl alloys. Mater. Sci. Eng. A 441, 106 (2006).CrossRefGoogle Scholar
20.Yokoyama, Y., Yamasaki, T., Liaw, P.K., Buchanan, R.A., and Inoue, A.: Glass-structure changes in tilt-cast Zr-Cu-Al glassy alloys. Mater. Sci. Eng. A 449, 621 (2007).CrossRefGoogle Scholar
21.Takeuchi, A. and Inoue, A.: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans. JIM 41, 1372 (2000).CrossRefGoogle Scholar
22.Miracle, D.B., Sanders, W.S., and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).CrossRefGoogle Scholar
23.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
24.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
25.Gale, W.F. and Totemeier, T.C.: Smithells Metals Reference Book (Elsevier Butterworth-Heinemann, Oxford, 2004), pp.11373.Google Scholar
26.Riani, P., Arrighi, L., Marazza, R., Mazzone, D., Zanicchi, G., and Ferro, R.: Tenary rare-earth aluminum systems with copper: A review and a contribution to their assessment. J. Phase Equilib.Diffus. 25, 22 (2004).CrossRefGoogle Scholar
27.Miracle, D.B.: The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).CrossRefGoogle Scholar
28.Miracle, D.B. and Senkov, O.N.: A geometric model for atomic configurations in amorphous Al alloys. J. Non-Cryst. Solids. 319, 174 (2003).CrossRefGoogle Scholar
29.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
30.Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007).CrossRefGoogle Scholar
31.Lu, Z.P. and Liu, C.T.: Role of minor alloying additions in formation of bulk metallic glasses: A review. J. Mater. Sci. 39, 3965 (2004).CrossRefGoogle Scholar