Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T08:35:35.188Z Has data issue: false hasContentIssue false

The effect of undercooling and Nd422 phase content on the nucleation of large Nd–Ba–Cu–O grains fabricated by top-seeded melt processing

Published online by Cambridge University Press:  31 January 2011

N. Hari Babu
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
W. Lo
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Y. Shi
Affiliation:
Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

The nucleation and growth of NdBa2Cu3O7–δ (Nd123)–Nd4Ba2Cu2O10 (Nd422) single-grain composites in a controlled 1% O2 in N2 atmosphere were investigated in detail as a function of solidification temperature and Nd422 phase content using a top-seeded melt growth technique. A schematic process phase diagram in the peritectic solidification region of Nd–Ba–Cu–O (NdBCO) was constructed primarily from constant isothermal growth experiments at various temperatures for several compositions and used to fabricate large single-grain material by both isothermal and continuous slow cooling over a limited temperature range. The nucleation at the seed surface and subsequent growth of uniform grains was observed to depend critically on the controlled rate of grain growth and the temperature range over which solidification occurred.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., Vandover, R.B., Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3.Murakami, M., Morita, M., Doi, K., and Miyamato, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
4.Chu, W.K., Ma, M.A., McMichael, C.K., and Lamb, M.A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
5.Murakami, M., Appl. Supercond. 1, 1157 (1993).CrossRefGoogle Scholar
6.Bornemann, H.J. and Sander, M., IEEE Trans. Appl. Supercond. 7, 398 (1997).CrossRefGoogle Scholar
7.Coombs, T.A. and Campbell, A.M., Inst. of Phys. Conf. Ser. 148, 671 (1995).Google Scholar
8.Itoh, Y., Yanagi, Y., Yoshikawa, M., Oka, T., Harada, S., Sakakibara, T., Yamada, Y., and Mizutani, U., Jpn. J. Appl. Phys. 34, 5574 (1995).CrossRefGoogle Scholar
9.Chen, I.G., Liu, J.X., Ren, Y.R., Weinstein, R., Kozlowski, G., and Oberly, O.E., Appl. Phys. Lett. 62, 3366 (1993).CrossRefGoogle Scholar
10.Fuchs, G., Krabbes, G., Schatzle, P., Stoye, P., Staiger, T., and Muller, K.H., Physica C 268, 115 (1996).CrossRefGoogle Scholar
11.Lo, W., Cardwell, D.A., Dewhurst, C.D., Leung, H.T., Chow, J.C.L, and Shi, Y.H., J. Mater. Res. 12, 2889 (1997).CrossRefGoogle Scholar
12.Sengupta, S., Corpus, J., Gaines, J.R. Jr, Todt, V.R., Zhang, X-F., Miller, D.J., Varanasi, C., and McGinn, P.J., IEEE Trans. Appl. Supercond. 7, 1723 (1997).CrossRefGoogle Scholar
13.Morita, M., Sawamura, M., Takebashi, S., Kimura, K., Teshima, H., Tanaka, M., Miyamoto, K., and Hashimoto, M., Physica C 235–240, 209 (1994).CrossRefGoogle Scholar
14.Gautier-Picard, P., Chaud, X., Beaugnon, E., Erraud, A., and Tournier, R., Mater. Sci. Eng. B53, 66 (1998).CrossRefGoogle Scholar
15.Dewhurst, C.D., Lo, W., Shi, Y.H., and Cardwell, D.A., J. Mater. Sci. Eng. B53, 169 (1998).Google Scholar
16.Cardwell, D.A., J. Mater. Sci. Eng. B53, 1 (1998).Google Scholar
17.Yoo, S.I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
18.Egi, T., Wen, J.G., Kuroda, K., Unoki, H., Koshizuka, N., Appl. Phys. Lett. 67, 2406 (1995).CrossRefGoogle Scholar
19.Ikeda, S., Oka, T., Yamada, Y., Yoshikawa, M., Yanagi, Y., Itoh, Y., and Mizutani, U., Jpn. J. Appl. Phys. 36, L345 (1997).CrossRefGoogle Scholar
20.Takagi, A., Yamazaki, T., Oka, T., Yanagi, Y., Itoh, Y., Yoshikawa, M., Yamada, Y., and Mizutani, U., Physica C 250, 222 (1995).CrossRefGoogle Scholar
21.Ikeda, S., Yoshikawa, M., Yanagi, Y., Itoh, Y., Oka, T., Ikuta, H., and Mizutani, U., in Advances in Superconductivity X (SpringerVerlag, Tokyo, 1998), p. 705.CrossRefGoogle Scholar
22.Krauns, C., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B96, 207 (1994).CrossRefGoogle Scholar
23.Salama, K., Parikh, A.S., and Woolf, L., Appl. Phys. Lett. 68, 1993 (1996).CrossRefGoogle Scholar
24.Lo, W., Hari Babu, N., Cardwell, D.A., Shi, Y., and Astill, D.M., unpublished.Google Scholar
25.Lo, W., Cardwell, D.A., Dung, S-L., and Barter, R.G., J. Mater. Res. 11, 39 (1996).CrossRefGoogle Scholar
26.Lo, W., Cardwell, D.A., and Shi, Y.H., J. Mat. Sci. Eng. B. (1999, in press).Google Scholar
27.Cardwell, D.A., Lo, W., Thorpe, H.D.E, and Roberts, A., J. Mater. Sci. Lett. 14, 1444 (1995).CrossRefGoogle Scholar