Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:24:28.077Z Has data issue: false hasContentIssue false

Effect of TiO2 doping on rapid densification of alumina by plasma activated sintering

Published online by Cambridge University Press:  31 January 2011

R. S. Mishra
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
A. K. Mukherjee
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
K. Yamazaki
Affiliation:
Department of Mechanical and Aeronautical Engineering, University of California, Davis, California 95616
K. Shoda
Affiliation:
Sodick Co. Ltd., Yokohama, Japan
Get access

Abstract

The effects of plasma cycle and TiO2 doping on sintering kinetics during plasma activated sintering (PAS) of γ−Al2O3 have been studied in the temperature range of 1473–1823 K. Multiple plasma cycle leads to higher densification. Also, TiO2 doping enhances the sintering kinetics during PAS. In TiO2 doped specimens, near full density was obtained at 1673 K in less than 6 min using multiple plasma cycle. It is suggested that the dielectric properties of a material are critical for the success of the PAS process.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mishra, R. S., Schneider, J.A., Shackelford, J.F., and Mukherjee, A. K., NanoStructured Mater. 5, 525 (1995).CrossRefGoogle Scholar
2.Freim, J., McKittrick, J., Katz, J., and Suckafus, K., NanoStructured Mater. 4, 371 (1994).CrossRefGoogle Scholar
3.Mishra, R. S. and Mukherjee, A. K., in Advanced in Powder Metal & Particulate Materials (1995, in press).Google Scholar
4.Groza, J. R., Risbud, S. H., and Yamazaki, K., J. Mater. Res. 7, 2643 (1992).CrossRefGoogle Scholar
5.Hensley, J. Jr., Shan, C. H., Risbud, S. H., and Groza, J. R., PM in Aerospace, Defence and Demanding Applications–1993 (Metal Powder Industries Federation, Princeton, NJ, 1993), p. 309.Google Scholar
6.Groza, J., Scripta Metall. Mater. 30, 53 (1994).CrossRefGoogle Scholar
7.Risbud, S. H., Groza, J.R., and Kim, M. J., Philos. Mag. B 69, 525 (1994).CrossRefGoogle Scholar
8.Risbud, S. H. and Shan, C. H., Mater. Lett. 20, 149 (1994).CrossRefGoogle Scholar
9.Risbud, S. H., Shan, C. H., Kim, M. J., and Mukherjee, A. K., J. Mater. Res. 10, 237 (1995).CrossRefGoogle Scholar
10.Tsai, D-S. and Hsieh, C-C., J. Am. Ceram. Soc. 74, 830 (1991).CrossRefGoogle Scholar
11.Skrovanek, S. D. and Bradt, R. C., J. Am. Ceram. Soc. 62, 215 (1979).CrossRefGoogle Scholar
12.Sutton, W. H., Ceram. Bull. 68, 376 (1989).Google Scholar
13.Dynys, F. W. and Halloran, J. W., J. Am. Ceram. Soc. 65, 442 (1982).CrossRefGoogle Scholar
14.Kumagai, M. and Messing, G.L., J. Am. Ceram. Soc. 67, C230 (1984).CrossRefGoogle Scholar
15.Kumagai, M. and Messing, G.L., J. Am. Ceram. Soc. 68, 500 (1985).CrossRefGoogle Scholar
16.McArdle, L. and Messing, G.L., J. Am. Ceram. Soc. 69, C98 (1986).CrossRefGoogle Scholar
17.Woignier, T., Lespade, P., Phalippou, J., and Rogier, R., J. Non-Cryst. Solids 100, 325 (1988).CrossRefGoogle Scholar
18.Lee, H. L. and Lee, H. S., J. Mater. Sci. Lett. 13, 316 (1994).CrossRefGoogle Scholar
19.Morosin, B. and Lynch, R. W., Acta Crystallogr. B 28, 1040 (1972).CrossRefGoogle Scholar