Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T06:41:45.898Z Has data issue: false hasContentIssue false

Effect of the species of substituted ion on ferroelastic domain switching of rare-earth ion-doped ZrO2 pseudo-single crystals

Published online by Cambridge University Press:  26 July 2012

Takanori Kiguchi
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Atsushi Saiki
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Kazuo Shinozaki
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Nobuyasu Mizutani
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Get access

Extract

The difference of domain switching amount of 3 mol% R2O3−ZrO2 (R = Yb, Y, Dy, Gd, Eu, Sm) pseudo-single crystals with additive cation species was investigated from the microstructural aspect. The switching amount of Yb, Y, Dy, and Gd substituted ZrO2 was three times higher than that of Eu and Sm. The amount corresponded to the volume fraction of the t′-phase, and it indicated that phase separation proceeded, especially in Eu and Sm substituted ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Michel, D., Mazerolles, L., Perez, M., and Jorba, Y., J. Mater. Sci. 18, 26182628 (1983).CrossRefGoogle Scholar
2.Virkar, A. V. and Matsumoto, R.L. K., J. Am. Ceram. Soc. 69, C224–C226 (1986).CrossRefGoogle Scholar
3.Virkar, A. V. and Matsumoto, R. L. K., Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24, pp. 653662.Google Scholar
4.Srinivasan, G. V., Jue, J-F., Kuo, S-Y., and Virkar, A. V., J. Am. Ceram. Soc. 72, 20982103 (1989).CrossRefGoogle Scholar
5.Virkar, A. V., Jue, J. F., Smith, P., Mehta, K., and Prettyman, K., Phase Transitions 35, 2746 (1991).CrossRefGoogle Scholar
6.Jue, J. F. and Virkar, A. V., J. Am. Ceram. Soc. 73, 36503657 (1990).CrossRefGoogle Scholar
7.Kiguchi, T., Saiki, A., Shinozaki, K., Terayama, K., and Mizutani, N., J. Ceram. Soc. Jpn. 105 (9), 775778 (1997).CrossRefGoogle Scholar
8.Kiguchi, T., Saiki, A., Shinozaki, K., Terayama, K., and Mizutani, N., J. Ceram. Soc. Jpn. 105 (12) (1997, in press).Google Scholar
9.Ishizawa, N., Saiki, A., Mizutani, N., and Kato, M., Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 24, pp. 479484.Google Scholar
10.Saiki, A., Ph.D. Thesis, Tokyo Institute of Technology (1989).Google Scholar
11.Kiguchi, T., Ph.D. Thesis, Tokyo Institute of Technology (1997).Google Scholar
12.Toraya, H., Yoshimura, M., and Sōmiya, S., Zirconia Ceramics, (Uchidaroukakuho, 1984), Vol. 2, pp. 5359.Google Scholar
13.Yashima, M., Morimoto, K., Ishizawa, N., and Yoshimura, M., Science and Technology of Zirconia V, edited by Badwal, S. P. S., Bannister, M. J., and Hannink, R. H. J. (Technomic Pub. Co., Lancaster, PA, 1993), pp. 125135.Google Scholar
14.Andrievskaya, E. R. and Lopato, L. M., J. Mater. Sci. 30, 2591– 2596 (1995).CrossRefGoogle Scholar