Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:18:24.368Z Has data issue: false hasContentIssue false

Effect of the pH and electrodeposition frequency on magnetic properties of binary Co1−xSnx nanowire arrays

Published online by Cambridge University Press:  03 January 2014

Mojgan Najafi*
Affiliation:
Department of Materials Engineering, Hamedan University of Technology (HUT), 65169, Hamedan, Iran
Amir Abbas Rafati
Affiliation:
Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174 Hamedan, Iran
Mona Khorshidi Fart
Affiliation:
Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174 Hamedan, Iran
Atefeh Zare
Affiliation:
Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174 Hamedan, Iran
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Ordered 30-nm Co1−xSnx (0 ≤ x ≤ 0.78) nanowire arrays have been prepared by co-electrodeposition of Co and Sn into pores of homemade anodized aluminum oxide (AAO). The magnetic properties of the Co1−xSnx nanowires are presented as a function of Sn content (x), annealing, electrolyte pH, electrodeposition frequency, and wave form. The result of energy-dispersive x-ray spectroscopy (EDX) showed anomalous co-deposition for Co and Sn. The nanowires have uniaxial magnetic anisotropy with easy magnetization direction along the nanowire axis due to the large shape anisotropy. As-deposited and annealed alloy nanowires, determined by x-ray diffraction (XRD), have amorphous phase. The nanowires electrodeposited at different pH and the electrodeposition frequencies have significantly different magnetic properties. Magnetization measurement showed that variation in magnetic properties of the nanowire arrays rooted in surface formation of Co(OH)2 and Sn(OH)2 in upper pH. The XRD patterns of Co and Co0.97Sn0.03 of nanowires obtained at pH = 2 and 4 obviously illustrated that pH affects the crystal structure of Co nanowires but has no effect on alloy nanowires. Moreover, the precipitation process was affected by raising the electrodepositing frequency via changing the rate of reduction of solute ions. The electrodeposition wave form has no significant effect on nanowire magnetic properties. The considerable enhanced coercivity has been measured in annealed nanowires. Experimental data demonstrate that the optimized composition for annealed Co1−xSnx nanowire is around Co0.93Sn0.07 in which the coercivity (Hc) has a maximum value of 2030 Oe.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, S-C., Chen, S-Y., Chen, Y-T., and Cheng, S-Y.: Electrochemical fabrication and magnetic properties of highly ordered silver–nickel core-shell nanowires. J. Alloys Compd. 449, 232 (2008).CrossRefGoogle Scholar
Shima, M., Hwang, M., and Ross, C.A.: Magnetic behavior of amorphous CoP cylinder arrays. J. Appl. Phys. 93, 3440 (2003).Google Scholar
Ji, G.B., Chen, W., Tang, S.L., Gu, B.X., Li, Z., and Du, Y.W.: Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays. Solid State Commun. 130, 541 (2004).Google Scholar
Kung, S.C., Xing, W., Donavan, K.C., Yang, F., and Penner, R.M.: Photolithographically patterned silver nanowire electrodeposition. Electrochim. Acta 55, 8074 (2010).Google Scholar
Lupan, O., Ursaki, V.V., Chai, G., Chow, L., Emelchenko, G.A., Tiginyanu, I.M., Gruzintsev, A.N., and Redkin, A.N.: Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators, B 144, 5666 (2010).CrossRefGoogle Scholar
Sen, S., Kanitkar, P., Sharma, A., Muthe, K.P., Rath, A., Deshpande, S.K., Kaur, M., Aiyer, R.C., Gupta, S.K., and Yakhmi, J.V.: Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens. Actuators, B 147, 453 (2010).Google Scholar
Jessensky, O., Müller, F., and Gösele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).Google Scholar
Xu, Y., Xue, D.S., Gao, D.Q., Fu, J.L., Fan, X.L., Guo, D.W., Gao, B., and Sui, W.B.: Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy. Electrochim. Acta 54, 5684 (2009).Google Scholar
Jagminas, A., Maţeika, K., Juška, E., Reklaitis, J., and Baltrūnas, D.: Electrochemical fabrication and characterization of lepidocrocite (γ-FeOOH) nanowire arrays. Appl. Surf. Sci. 256, 3993 (2010).Google Scholar
Li, Y., Huang, Y., Yan, L., Qi, S., Miao, L., Wang, Y., and Wang, Q.: Synthesis and magnetic properties of ordered barium ferrite nanowire arrays in AAO template. Appl. Surf. Sci. 257, 89748980 (2011).CrossRefGoogle Scholar
Almasi Kashi, M., Ramazani, A., Adelnia Najafabadi, F., and Heydari, Z.: Controlled Cu content of electrodeposited CoCu nanowires through pulse features and investigations of microstructures and magnetic properties. Appl. Surf. Sci. 257, 9347 (2011).Google Scholar
Wang, R.L., Tang, S.L., Shi, Y.G., Fei, X.L., Nie, B., and Du, Y.W.: Effects of annealing on the structure and magnetic properties of Fe27Co23Pb50 nanowire arrays. J. Appl. Phys. 103, 07D507 (2008).CrossRefGoogle Scholar
Xu, J.P., Zhang, Z.Z., Ma, B., and Jin, Q.Y.: Compositional control of FexPt(1−x) nanowires by electrodeposition. J. Appl. Phys. 109, 07B704 (2011).Google Scholar
Pirota, K.R., Béron, F., Zanchet, D., Rocha, T.C.R., Navas, D., Torrejón, J., Vazquez, M., and Knobel, M.: Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys. 109, 083919 (2011).Google Scholar
Vivas, L.G., Vázquez, M., Vega, V., García, J., Rosa, W.O., del Real, R.P., and Prida, V.M.: Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy. J. Appl. Phys. 111, 07A325 (2012).Google Scholar
Kartopu, G., Yalçın, O., Es-Souni, M., and Başaran, A.C.: Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio. J. Appl. Phys. 103, 093915 (2008).Google Scholar
Zhang, J., Jones, G.A., Shen, T.H., Donnelly, S.E., and Li, G.H.: Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J. Appl. Phys. 101, 054310 (2007).Google Scholar
Xu, X. and Zangari, G.: Microscopic structure and magnetic behavior of arrays of electrodeposited Ni and Fe nanowires. J. Appl. Phys. 97, 10A306 (2005).CrossRefGoogle Scholar
Esmaeily, A.S., Venkatesan, M., Razavian, A.S., and Coey, J.M.D.: Diameter-modulated ferromagnetic CoFe nanowires. J. Appl. Phys. 113, 17A327 (2013).Google Scholar
Sultan, M.S., Das, B., Mandal, K., and Atkinson, D.: Magnetic field alignment of template released ferromagnetic nanowires. J. Appl. Phys. 112, 013910 (2012).Google Scholar
Liu, Q.F., Wang, J.B., Yan, Z.J., and Xue, D.S.: The effect of diameter on micromagnetic properties of Fe0.68Ni0.32 nanowire arrays. J. Magn. Magn. Mater. 278, 323 (2004).Google Scholar
Saedi, A. and Ghorbani, M.: Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).Google Scholar
Wang, Y.W., Zhang, L.D., Meng, G.W., Peng, X.S., Jin, Y.X., and Zhang, J.: Fabrication and the annealing temperature dependence of magnetic properties for ordered ferromagnetic-nonmagnetic alloy nanowire arrays. J. Phys. Chem. B 106, 2502 (2002).Google Scholar
Ji, G.B., Tang, S.L., Gu, B.X., and Du, Y.W.: Ordered Co48Pb52 nanowire arrays electrodeposited in the porous anodic alumina oxide template with enhanced coercivity. J. Phys. Chem. B 108, 8862 (2004).Google Scholar
Min, J.H., Wu, J.H., Cho, J.U., Lee, J.H., Ko, Y.D., Liu, H.L., Chung, J.S., and Kim, Y.K.: Electrochemical preparation of Co3Pt nanowires. Phys. Status Solidi A 204, 4158 (2007).Google Scholar
Mo, G., Cheng, W., Cai, Q., Wang, W., Zhang, K., Xing, X., Chen, Z., and Wu, Z.: Structural change of Ni–Cu alloy nanowires with temperature studied by in situ X-ray absorption fine structure technique. Mater. Chem. Phys. 121, 390 (2010).Google Scholar
Liu, L., Li, H., Fan, S., Gu, J., Li, Y., and Sun, H.: Fabrication and magnetic properties of Ni–Zn nanowire arrays. J. Magn. Magn. Mater. 321, 3511 (2009).Google Scholar
Wang, R.L., Tang, S.L., Nie, B., Fei, X.L., Shi, Y.G., and Du, Y.W.: Fabrication and magnetic properties of ordered Fe60Pb40 nanowire arrays electrodeposited in AAO templates. Solid State Commun. 142, 639 (2007).Google Scholar
Li, F. and Ren, L.: Fabrication and magnetic properties of FePt3 nanowire arrays. Phys. Status Solidi A 193, 196 (2002).Google Scholar
Koohbor, M., Soltanian, S., Najafi, M., and Servati, P.: Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process. Mater. Chem. Phys. 131, 728 (2012).Google Scholar
Wang, T., Li, F., Wang, Y., and Song, L.: Structure and magnetic properties of metastable Co–Cu solid solution nanowire arrays fabricated by electrodeposition. Phys. Status Solidi A 203, 2426 (2006).Google Scholar
Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina. Science 268, 1466 (1995).Google Scholar
Masuda, H., Hasegawa, F., and Ono, S.: Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).Google Scholar
Masuda, H., Yada, K., and Osaka, A.: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340 (1998).Google Scholar
O’Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London, Ser. A 317, 511 (1970).Google Scholar
Najafi, M., Soltanian, S., Danyali, H., Hallaj, R., Salimi, A., Elahi, S.M., and Servati, P.: Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer. J. Mater. Res. 27(18), 2382 (2012).CrossRefGoogle Scholar