Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T01:05:53.640Z Has data issue: false hasContentIssue false

Effect of stoichiometry on the structural properties and the electronic structure of intermetallics: Anti-phase boundary energies in FeAl and NiAl

Published online by Cambridge University Press:  29 June 2016

T. Hong
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
A. J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112 and Argonne National Laboratory, Argonne, Illinois 60349
Get access

Abstract

As a possible means of alleviating the severe brittleness in the B2 compounds FeAl and NiAl, the all-electron self-consistent total energy linear muffin-tin orbital (LMTO) method was employed to investigate the possibility of lowering the ⟨111⟩ anti-phase boundary (APB) energies by changing compositions in FeAl and NiAl. For APB's created in the regions with excess Fe (or Ni) atoms, APB energies for the model systems, Fe0.6Al0.4 and Ni0.6Al0.4, were found to be one order of magnitude smaller than those for stoichiometric B2 FeAl and NiAl, respectively. Apparently, the activation of ⟨111⟩ slip became possible in these cases. On the other hand, the APB energies remained at about the same as those in stoichiometric FeAl and NiAl for APB's occurring in regions with equal numbers of Fe (Ni) and Al atoms, implying that the activation of ⟨111⟩ slip in these regions was not eased.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966); A. Ball and R. E. Smallman, Acta Metall. 16, 233 (1968).Google Scholar
2.Sainfort, G., Mem. Sci. Rev. Metall. 60, 125 (1963).Google Scholar
3.Stoloff, N. S., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 3 and references therein.Google Scholar
4.Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 381 and references therein.Google Scholar
5.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 381 and references therein.Google Scholar
6.Baker, I. and Munroe, P. R., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., and Pope, D. (Metallurgical Society of AIME, Warrendale, PA, 1989), p. 425.Google Scholar
7.Fleischer, R. L., Dimiduk, D. M., and Lipsitt, H. A., Annu. Rev. Mater. Sci. 19, 231 (1989) and references therein.Google Scholar
8. See, for example, Ball, A. and Smallman, R. E., Acta Metall. 14, 1517 (1966).Google Scholar
9.von Mises, R., Angew, Z.. Math. Mech. 8, 161 (1928).Google Scholar
10.Yamagata, T. and Yoshida, H., Mater. Sci. and Eng. 12, 95 (1973).Google Scholar
11.Dimiduk, D. M. and Miracle, D. B., in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 349.Google Scholar
12.Marcinkowski, M. J., in Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1974), p. 333.Google Scholar
13.Hong, T. and Freeman, A. J., Phys. Rev. B. 43, 6446 (1991).Google Scholar
14.Ray, I. L. F., Crawford, R. C., and Cockayne, D. J. H., Philos. Mag. 21, 1027 (1970).Google Scholar
15.Mendiratta, M. G., Kim, H-M., and Lipsitt, H. A., Metall. Trans. A 15, 395 (1984).Google Scholar
16.Mendiratta, M. G., Ehlers, S. K., Dimiduk, D. M., Kerr, W. R., Mazdiyasni, S., and Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 393.Google Scholar
17.Munroe, P. R. and Baker, I., Scripta Metall. 23, 495 (1989).Google Scholar
18.Andersen, O. K., Phys. Rev. B 12, 3060 (1975); T. Oguchi and A. J. Freeman, J. Mag. Magn. Mater. 46, LI (1984).CrossRefGoogle Scholar
19.Min, B. I., Oguchi, T., Jansen, H. J. F., and Freeman, A. J., J. Mag. Magn. Mater. 54–57, 1091 (1986).Google Scholar
20.Binary Alloy Phase Diagrams, edited by Massalski, T. B. (American Society for Metals, Metals Park, OH, 1986), Vol. 1.Google Scholar
21.Bradley, A. J. and Taylor, A., Proc. Roy. Soc. A 136, 210 (1932).Google Scholar
22.Bradley, A. J. and Taylor, A., Proc. Roy. Soc. A 159, 56 (1937).Google Scholar
23.Ridley, N., J. Inst. Metals 94, 255 (1966).Google Scholar
24.Oguchi, T. and Sasaki, T. (to be published).Google Scholar
25.Mendiratta, M. G. and Law, C. C., J. Mater. Sci. 22, 607 (1987).Google Scholar
26.Potter, D. I., Mater. Sci. Eng. 5, 201 (1969/1970).Google Scholar
27.Rudy, M. and Sauthoff, G., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 327.Google Scholar
28.Crawford, R. C. and Ray, I. L. F., Philos. Mag. 35, 549 (1977).CrossRefGoogle Scholar
29.Okochi, M., J. Phys. Soc. Jpn. 39, 367 (1975).Google Scholar
30.Nagel, D.J., Boyer, L. L., Papaconstantopoulos, D. A., and Klein, B. M., Inst. Phys. Conf. Ser. 39, 104 (1978).Google Scholar
31.Ziesche, P., Wonn, H., Müller, Ch., Nemoshkalenko, V. V., and Krivitskii, V. P., Phys. Status Solidi (b) 87, 129 (1978).Google Scholar
32.Müller, Ch., Seifert, G., Lautenschläger, G., Wonn, H., Ziesche, P., and Mrosan, E., Phys. Status Solidi (b) 91, 605 (1979).Google Scholar
33.Müller, Ch., Wonn, H., Blau, W., Ziesche, P., and Krivitskii, V. P., Phys. Status Solidi (b) 95, 215 (1979).Google Scholar
34.Eibler, R. and Neckel, A., J. Phys. F 10, 2179 (1980).Google Scholar
35.Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 4, 1060 (1989).CrossRefGoogle Scholar
36.Xu, Jianhua and Freeman, A. J. (to be published).Google Scholar
37.Hong, T. and Freeman, A. J., J. Mater. Res. 6, 330 (1991).Google Scholar
38.Urwank, P., Woittennek, H., and Wonn, H., preprint 05-24-74, TU, Dresden (1977).Google Scholar
39.Colinet, C., Bessoud, B., and Pasturel, A., J. Phys.: Condensed Matter 1, 5837 (1989).Google Scholar
40.Weinberger, P., J. Phys. C 10, L347 (1977).Google Scholar
41.Adachi, H., Nasu, S., and Fujita, F. E., Mater. Sci. Forum 37, 173 (1989).Google Scholar
42.Moruzzi, V. L., Williams, A. R., and Janak, J. F., Phys. Rev. B 10, 4856 (1974).Google Scholar