Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:30:46.777Z Has data issue: false hasContentIssue false

Effect of sterilization processes on nanostructured Ti6Al4V surfaces obtained by electropolishing

Published online by Cambridge University Press:  26 February 2019

Leonardo Marasca Antonini*
Affiliation:
LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brasil
Célia de Fraga Malfatti
Affiliation:
LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brasil
Gwendolen C. Reilly
Affiliation:
Department of Materials Science and Engineering, Institute for in Silico Medicine (INSIGNEO), University of Sheffield, Sheffield S1 3JD, U.K.
Robert Owen
Affiliation:
Department of Materials Science and Engineering, Institute for in Silico Medicine (INSIGNEO), University of Sheffield, Sheffield S1 3JD, U.K.
Antonio Shigueaki Takimi
Affiliation:
ELETROCORR/PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brasil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electrochemical treatments, such as electropolishing on titanium alloys, are used to promote the formation of nanostructured surfaces, which can contribute to the bone regeneration process. However, sterilization methods can change the superficial and physicochemical properties of the biomaterials. The objective of this work was to evaluate the effect of three sterilization methods (air plasma, ethanol + PBS, and autoclave sterilizations) on nanostructured Ti6Al4V surfaces properties obtained by electrochemical treatment. These methods, especially the first two, have been widely used in literature, yet few studies in the literature highlight the changes on the surface of the samples. The nanostructures were obtained by electropolishing in a H2SO4/HF/glycerine solution, at 25 V and at 7 °C for 4 min. Samples were characterized by atomic force microscopy (AFM), profilometry, and wettability. Samples were seeded with hESC-MPs, and the cell number was measured. The air plasma sterilization did not promote changes in nanometric morphology and roughness of the Ti6Al4V nanostructured samples. Unlike air plasma sterilization, the ethanol + PBS and the autoclave sterilizations, which strongly affected the nanostructured surface morphology and properties, and, consequently, the cellular viability after 7 days of contact with human embryonic stem cell-derived mesenchymal progenitors (hESC-MPs).

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huang, C.A., Hsu, F., and Yu, C.H.: Electropolishing behaviour of pure titanium in sulphuric acid-ethanol electrolytes with an addition of water. Corros. Sci. 53, 589 (2011).CrossRefGoogle Scholar
Landis, W.J. and Silver, F.H.: Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189, 2024 (2009).CrossRefGoogle ScholarPubMed
Martinez, E., Engel, E., Planell, J.A., and Samitier, J.: Effects of artificial microand nano-structured surfaces on cell behaviour. Ann. Anat. 191, 126135 (2009).CrossRefGoogle Scholar
Lord, M., Foss, M., and Besenbacher, F.: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5, 6678 (2010).CrossRefGoogle Scholar
Wang, P., Zhao, L., Liu, J., Weir, M.D., Zhou, X., and Xu, H.H.K.: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2, 113 (2014).CrossRefGoogle ScholarPubMed
Zhao, L., Liu, L., Wu, Z., Zhang, Y., and Chu, P.K.: Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials 33, 26292641 (2012).CrossRefGoogle Scholar
Liao, S., Nguyen, L.T., Ngiam, M., Wang, C., Cheng, Z., Chan, C.K., and Ramakrishna, S.: Biomimetic nanocomposites to control osteogenic differentiation of human mesenchymal stem cells. Adv. Healthcare Mater. 3, 737751 (2014).CrossRefGoogle ScholarPubMed
Fricain, J.C., Schlaubitz, S., Le Visage, C., Arnault, I., Derkaoui, S.M., Siadous, R., Catros, S., Lalande, C., Bareille, R., Renard, M., Fabre, T., Cornet, S., Durand, M., Léonard, A., Sahraoui, N., Letourneur, D., and Amédéd, J.: A nano-hydroxyapatite—Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34, 29472959 (2013).CrossRefGoogle ScholarPubMed
Gossla, E., Tonndorf, R., Bernhardt, A., Kirsten, M., Hund, R.–D., Aibibu, D., Cherif, C., and Gelinsky, M.: Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Acta Biomater. 44, 267276 (2016).CrossRefGoogle ScholarPubMed
Wang, Y., Wen, C., Hodgson, P., and Li, Y.: Biocompatibility of TiO2 nanotubes with different topographies. J. Biomed. Mater. Res., Part A 102, 743751 (2014).CrossRefGoogle ScholarPubMed
Giai, C., Ortiz, M.R., Kappes, M.A., Senko, J., and Iannizzi, M.: Efficacy of sterilization methods and their influence on the electrochemical behaviour of plain carbon steel. J. Electrochem. Soc. 163, C633C642 (2016).CrossRefGoogle Scholar
Baldin, E.K.K., Garcia, C., Henriques, J.A.P., Ely, M.R., Birriel, E.J., Brandalise, R.N., and Malfatti, C.F.: Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy. J. Mater. Res. 33, 161177 (2018).CrossRefGoogle Scholar
Duske, K., Koban, I., Kindel, E., Schröder, K., Nebe, B., Holtfreter, B., Jablonowski, L., Weltmann, K.D., and Kocher, T.: Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 39, 400407 (2012).CrossRefGoogle ScholarPubMed
Hsu, S.H., Chang, Y.L., Tu, Y.C., Tsai, C.M., and Su, W.F.: Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite. ACS Appl. Mater. Interfaces 5, 29912998 (2013).CrossRefGoogle ScholarPubMed
Matuska, A.M. and McFetridge, P.S.: The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J. Biomed. Mater. Res., Part B 2, 397406 (2014).Google Scholar
Conway, K. and Kiernan, J.A.: Chemical dehydration of specimens with 2,2-dimethoxypropane (DMP) for paraffin processing of animal tissues: Practical and economic advantages over dehydration in ethanol. Biotech. Histochem. 74, 2026 (1999).CrossRefGoogle Scholar
Schmidt, C.E. and Baier, J.M.: Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21, 22152231 (2000).CrossRefGoogle ScholarPubMed
Oh, S., Brammer, K.S., Moon, K.S., Bae, J.M., and Jin, S.: Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes. Mater. Sci. Eng., C 31, 873879 (2011).CrossRefGoogle Scholar
Junkar, I., Kulkarni, M., Drasler, B., Rugelj, N., Mazare, A., Flasker, A., Drobne, D., Humpolícek, P., Resnik, M., Schmuki, P., Mozetic, M., and Iglic, A.: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 7986 (2016).CrossRefGoogle ScholarPubMed
Wen, C.: Surface Coating and Modification of Metallic Biomaterials (Woodhead, Sawston, Cambridge, UK, 2015).Google Scholar
Lamberti, A., Chiodoni, A., Shahzad, N., Bianco, S., Quaglio, M., and Pirri, C.F.: Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapour treatment. Sci. Rep. 5, 16 (2015).CrossRefGoogle Scholar
Wang, D., Liu, L., Zhang, F., Tao, K., Pippel, E., and Domen, K.: Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Lett. 11, 36493655 (2011).CrossRefGoogle Scholar
Yu, J., Dai, G., and Cheng, B.: Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J. Phys. Chem. C 114, 1937819385 (2010).CrossRefGoogle Scholar
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanable, T.: Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 10, 135138 (1998).3.0.CO;2-M>CrossRefGoogle Scholar
Kulkarni, M., Patil-Sen, Y., Junkar, I., Kulkarni, V.C., Lorenzetti, M., and Iglic, A.: Wettability studies of topologically distinct titanium surfaces. Colloids Surf., B 129, 4753 (2015).CrossRefGoogle ScholarPubMed
Kulkarni, M., Flasker, A., Lokar, M., Mrak-Poljsak, K., Mazare, A., Artenjak, A., Cucnuk, S., Kralj, S., Velikonja, A., Schmuki, P., Kralj-Iglic, V., Sodin-Semrl, S., and Iglic, A.: Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int. J. Nanomed. 10, 13591373 (2015).Google ScholarPubMed
Macdonald, D.E., Deo, N., Markovic, B., Stranick, M., and Somasundaran, P.: Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials 23, 12691279 (2002).CrossRefGoogle ScholarPubMed
Vezeau, P.J., Keller, J.C., and Wightman, J.P.: Reuse of healing abutments: An in vitro model of plasma cleaning and common sterilization techniques. Implant Dent. 9, 236246 (2000).CrossRefGoogle Scholar
Schrader, M.E.: On adhesion of biological substances to low-energy solid-surfaces. J. Colloid Interface Sci. 88, 296297 (1982).CrossRefGoogle Scholar
Baier, R.E., Meyer, A.E., Natiella, J.R., Natiella, R.R., and Carter, J.M.: Surface properties determine bioadhesive outcomes: Methods and results. J. Biomed. Mater. Res. 18, 327355 (1984).CrossRefGoogle ScholarPubMed
Hurbett, T.A., Ratner, B.D., Schakenraad, J.M., and Schoen, F.J.: Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, New York, 1996); p. 234.Google Scholar
Eriksson, C., Nygren, H., and Ohlson, K.: Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: Cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 25, 47594766 (2004).CrossRefGoogle ScholarPubMed
Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A., and Steinemann, S.G.: Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res. 83, 529533 (2004).CrossRefGoogle ScholarPubMed
Antonini, L.M., Kothe, V., Reilly, G.C., Owen, R., Marcuzzo, J.S., and Malfatti, C.F.: Effect of Ti6Al4V surface morphology on the osteogenic differentiation of human embryonic stem cells. J. Mater. Res. 32, 38113821 (2017).CrossRefGoogle Scholar
Antonini, L.M., Junior, A.G.S., Reilly, G., and Malfatti, C.F.: Human embryonic stem cell-derived mesenchymal progenitor (hESCs-MP) growth on nanostructured Ti6Al4V surfaces. Mater. Res. 21, 110 (2018).CrossRefGoogle Scholar
Ettwein, V. and Maslin, M.: Physical Geography: Fundamentals of the Physical Environment, 2nd ed. (University of London, London, England, 2011); p. 66.Google Scholar
O’Brien, J., Wilson, I., Orton, T., and Pognan, F.: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267, 54215426 (2000).CrossRefGoogle ScholarPubMed