Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T18:03:22.212Z Has data issue: false hasContentIssue false

The effect of solvent and electric field on the size distribution of iron oxide microdots: Exploitation of self-assembly strategies for photoelectrodes

Published online by Cambridge University Press:  17 January 2011

Rita Toth*
Affiliation:
Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
Mateusz Schabikowski
Affiliation:
Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; and Faculty of Materials Science and Ceramics, AGH University of Science and Technology, PL - 30-059 Krakow, Poland
Jakob Heier
Affiliation:
Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
Artur Braun
Affiliation:
Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
Dariusz Kata
Affiliation:
Faculty of Materials Science and Ceramics, AGH University of Science and Technology, PL-30-059 Krakow, Poland
Thomas Graule
Affiliation:
Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; and Technische Universität Bergakademie Freiberg, D-09599 Freiberg, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An increasing number of technologies benefit from or require patterned surfaces on a micro- and nanoscale. Methods developed to structure polymer films can be adapted to fabricate low-cost patterned ceramics using nonlithographic techniques, for example, dewetting and phase separation in thin films. In this paper we describe a simple patterning process that does not require a template and is able to produce Fe2O3 microdots with a spatial periodicity. Our method involves the dewetting of a silicon substrate by a thin metal oxide precursor film, in which the liquid film breaks up because of fluctuations in the film thickness induced by solvent evaporation or an external applied electric field. The patterning is followed by a thermal treatment at 550 °C to produce crystalline Fe2O3 microdots with a diameter range of 200 nm to 3 μm.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reiter, G.: Unstable thin polymer films: Rupture and dewetting processes. Langmuir. 9, 1344 (1993).CrossRefGoogle Scholar
2.Bucknall, D.G.: Influence of interfaces on thin polymer film behaviour. Prog. Mater. Sci. 49, 713 (2004).CrossRefGoogle Scholar
3.Reiter, G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75 (1992).CrossRefGoogle ScholarPubMed
4.Bischof, J., Scherer, D., Herminghaus, S., and Leiderer, P.: Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 1536 (1996).CrossRefGoogle ScholarPubMed
5.Jacobs, K., Herminghaus, S., and Mecke, K.R.: Thin liquid polymer films rupture via defects. Langmuir 14, 965 (1998).CrossRefGoogle Scholar
6.Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Frey, A., Ibn-elhaj, M., and Schalogwski, S.: Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916 (1998).CrossRefGoogle ScholarPubMed
7.Sharma, A. and Khanna, R.: Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).CrossRefGoogle Scholar
8.Ghatak, A., Khanna, R., and Sharma, A.: Dynamics and morphology of holes in dewetting of thin films. J. Colloid Interface Sci. 212, 483 (1999).CrossRefGoogle ScholarPubMed
9.Kargupta, K. and Sharma, A.: Creation of ordered patterns by dewetting of thin films on homogeneous and heterogeneous substrates. J. Colloid Interface Sci. 245, 99 (2002).CrossRefGoogle ScholarPubMed
10.Seemann, R., Herminghaus, S., and Jacobs, K.: Dewetting patterns and molecular forces: A reconciliation. Phys. Rev. Lett. 86, 5534 (2001).CrossRefGoogle ScholarPubMed
11.Blossey, J.: Nucleation at first-order wetting transition. Int. J. Mod. Phys. B 9, 3489 (1995).CrossRefGoogle Scholar
12.Becker, J., Grün, G., Seemann, R., Mantz, H., Jakobs, K., Mecke, K.R., and Blossey, R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).CrossRefGoogle ScholarPubMed
13.Mitov, Z. and Kumacheva, E.: Convection-induced patterns in phase-separating polymeric fluids. Phys. Rev. Lett. 81, 3427 (1998).CrossRefGoogle Scholar
14.Bestehorn, M. and Colinet, P.: Bénard–Marangoni convection of a binary mixture as an example of an oscillatory bifurcation under strong symmetry-breaking effects. Physica D 145, 84 (2000).CrossRefGoogle Scholar
15.Maillard, M., Motte, L., Ngo, A.T., and Pileni, M.P.: Rings and hexagons made of nanocrystals: A Marangoni effect. J. Phys. Chem. B 104, 11871 (2000).CrossRefGoogle Scholar
16.Cui, L., Wang, H.F., Ding, Y., and Han, Y.: Tunable ordered droplets induced by convection in phase-separating P2VP/PS blend film. Polymer (Guildf.) 45(24), 8139 (2004).CrossRefGoogle Scholar
17.Birnie, D.P.: Rational Solvent selection strategies to combat striation formation during spin coating of thin films. J. Mater. Res. 16(4), 1145 (2001).CrossRefGoogle Scholar
18.Geoghegan, M. and Kraush, G.: Wetting at polymer surfaces and interfaces. Prog. Polym. Sci. 28, 261 (2003).CrossRefGoogle Scholar
19.Rabani, E., Reichman, D.R., Geissler, P.L., and Brus, L.E.: Drying-mediated self-assembly of nanoparticles. Nature 426, 271 (2003).CrossRefGoogle ScholarPubMed
20.Thiele, U., Mertig, M., and Pompe, W.: Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability. Phys. Rev. Lett. 80, 2869 (1998).CrossRefGoogle Scholar
21.Jukes, P.C., Heriot, S.Y., Sharp, J.S., and Jones, R.A.L.: Time-resolved light scattering studies of phase separation in thin film semiconducting polymer blends during spin coating. Macromolecules 38, 2030 (2005).CrossRefGoogle Scholar
22.Meyerhofer, D.J.: Characteristics of resist film produced by spin coating. J. Appl. Phys. 49, 3993 (1978).CrossRefGoogle Scholar
23.Steiner, U.: Structure formation in polymer films. From micrometer to the sub-100 nm length scales, in Nanoscale Assembly, edited by Huck, W.T.S. (Springer, New York, 2005), p. 1.Google Scholar
24.Voicu, N.E., Saifullah, M.S.M., Subramanian, K.R.V., Welland, M.E., and Steiner, U.: TiO2 patterning using electro-hydrodynamic lithography. Soft Matter 3, 554 (2007).CrossRefGoogle ScholarPubMed
25.Pal, B. and Sharon, M.: Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: A study of photocatalytic properties. Thin Solid Films 379, 83 (2000).CrossRefGoogle Scholar
26.Kayes, B.M., Atwater, H.A., and Lewis, N.S.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).CrossRefGoogle Scholar