Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T20:28:42.910Z Has data issue: false hasContentIssue false

Effect of single crystal substrates on the growth and properties of superconducting Tl2Ba2CaCu2O8 films

Published online by Cambridge University Press:  31 January 2011

W.L. Holstein
Affiliation:
Du Pont Central Research and Development, Experimental Station, P. O. Box 80304, Wilmington, Delaware 19880-0304
L.A. Parisi
Affiliation:
Du Pont Central Research and Development, Experimental Station, P. O. Box 80304, Wilmington, Delaware 19880-0304
R.B. Flippen
Affiliation:
Du Pont Central Research and Development, Experimental Station, P. O. Box 80304, Wilmington, Delaware 19880-0304
D.G. Swartzfager
Affiliation:
Du Pont Central Research and Development, Experimental Station, P. O. Box 80304, Wilmington, Delaware 19880-0304
Get access

Abstract

Superconducting Tl2Ba2CaCu2O8 films were prepared by a two-step postdeposition anneal process under identical conditions on a number of single crystal substrates: (100) LaAlO3, (100) NdGaO3, (100) LaGaO3, (100) SrTiO3, (100) MgO, and (0001) Al2O3. The properties of the resulting Tl2Ba2CaCu2O8 films were strongly dependent on the substrate. Films on all substrates were predominantly c-axis oriented. Films prepared on LaAlO3, NdGaO3, and LaGaO3 also exhibited in-plane epitaxy, while films on MgO, Al2O3, and SrTiO3 were not aligned with the substrates. Some a-axis oriented grains of Tl2Ba2CaCu2O8 formed on NdGaO3 and both a-axis oriented grains and cracks were present on LaGaO3. Large amounts of secondary phases, as indicated by additional peaks in the x-ray diffraction scans, were observed for films on Al2O3 and SrTiO3 and smaller amounts on each of the other substrates. Depth profiling by sputtered neutral mass spectroscopy (SNMS) confirmed the presence of strong film-substrate reactions on Al2O3 and SrTiO3, and also indicated the presence of a reaction on NdGaO3. The Tc onset of the films as measured both inductively and by ac magnetic susceptibility varied depending on the substrate. The highest quality films were prepared on LaAlO3. NdGaO3 may also prove to be an acceptable substrate if the nucleation and growth of a-axis oriented Tl2Ba2CaCu2O8 grains can be eliminated. The remaining substrates appear to be less suitable due to severe film-substrate interactions, lack of epitaxial growth, or crystallographic phase changes.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Subramanian, M.A.Calabrese, J. C.Torardi, C. C.Gopala-krishnan, J., Askew, T. R.Flippen, R. B.Morrissey, K. J.Chowdhry, U. and Sleight, A. W.Nature 332, 420 (1988).CrossRefGoogle Scholar
2Holstein, W. L.Parisi, L. A.Wilker, C. and Flippen, R. B.Appl. Phys. Lett. 60, 2014 (1992).CrossRefGoogle Scholar
3Chang, L. D.Moskowitz, M.J.Hammond, R.B.Eddy, M.M.Olson, W. L.Casavant, D. D.Smith, E. J. and Robinson, M.Appl. Phys. Lett. 55, 1357 (1989).Google Scholar
4Olson, W.L.Eddy, M.M.James, T.W.Hammond, R.B.Griiner, G. and Drabek, L.Appl. Phys. Lett. 55, 188 (1989).Google Scholar
5Hong, M.Liou, S.H.Bacon, D.D.Grader, G.S.Kwo, J.Kortan, A. R. and Davidson, B. A.Appl. Phys. Lett. 53, 2102 (1988).Google Scholar
6Holstein, W.L.Parisi, L.A.Kountz, D.J.Wilker, C.Matthews, A.L.Arendt, P. N. and Taber, R. C.IEEE Magn. 27, 825 (1991).CrossRefGoogle Scholar
7Subramanyam, G.Radpour, F. and Kapoor, V. J.Appl. Phys. Lett. 56, 1799 (1990).CrossRefGoogle Scholar
8Hammond, R.B.Negrete, G.V.Bourne, L. C.Strother, D.D.Cardona, A. H. and Eddy, M. M.Appl. Phys. Lett. 57, 825 (1990).CrossRefGoogle Scholar
9Ginley, D.S.Kwak, J.F.Hellmer, R.P.Baughman, R.J.Venturini, E.L.Mitchell, M. A. and Morosin, B.Physica C156, 592 (1988).Google Scholar
10Ginley, D.S.Kwak, J.F.Hellmer, R.P.Baughman, R.J.Venturini, E.L. and Morosin, B.Appl. Phys. Lett. 53, 406 (1988).CrossRefGoogle Scholar
11Young, K. H.Arney, D.Smith, E. J. and Strother, D.Jpn. J. Appl. Phys. 30, L710 (1991).Google Scholar
12Young, K.H.Negrete, G.V.Eddy, M.M. and Smith, E.J.Jpn. J. Appl. Phys. 30, L1359 (1991).Google Scholar
13Kang, J. H.Gray, K. E.Kampwirth, R. T. and Day, D. W.Appl. Phys. Lett. 53, 2560 (1988).CrossRefGoogle Scholar
14Malandrino, G.Richeson, D.S.Marks, T.J.Groot, D.C. De, Schlinder, J.L. and Kannewurf, C. R.Appl. Phys. Lett. 58, 182 (1991).CrossRefGoogle Scholar
15Zhang, K.Boyd, E. P.Kwak, B. S.Wright, A. C. and Erbil, A.Appl. Phys. Lett. 55, 1258 (1989).Google Scholar
16Giess, E.A.Sandstrom, R. L.Gallagher, W.J.Gupta, A.Shinde, S.L.Cook, R. F.Cooper, E. I.O'Sullivan, E.J. M., Roldan, J. M.Segmuller, A. and Angilello, J.IBM J. Res. Develop. 34, 916 (1990).CrossRefGoogle Scholar
17Geller, S. and Bala, V.B.Acta Crystallogr. 9, 1019 (1956).Google Scholar
18Geller, S.Acta Crystallogr. 10, 243 (1957).Google Scholar
19Sandstrom, R.L.Giess, E.A.Gallagher, W.J.Segmueller, A.Cooper, E.I.Chisholm, M.F.Gupta, A.Shinde, S. and R.Laibowitz, B.Appl. Phys. Lett. 53, 1874 (1988).Google Scholar
20Miyazawa, S.Appl. Phys. Lett. 55, 2230 (1989).Google Scholar
21Lipinsky, D.Jede, R.Ganschow, O. and Benninghoven, A.J. Vac. Sci. Technol. A3, 2007 (1985).Google Scholar
22Doss, J. D.Coole, D.W.McCabe, C.W. and Maez, M.A.Rev. Sci. Instrum. 61, 2200 (1990).Google Scholar
23Holstein, W.L.Parisi, L.A.Face, D.W.Wu, X.D.Foltyn, S.R. and Muenchausen, R. E.Appl. Phys. Lett. 61, 982 (1992).CrossRefGoogle Scholar
24Wilker, C.Shen, Z.Y.Pang, P.Face, D.W.Holstein, W.L. and Matthews, A. L.IEEE Trans. Microwave Theory and Techn. 39, 1462 (1991).CrossRefGoogle Scholar
25Shen, Z. Y.Pang, P. X. W.Holstein, W. L.Wilker, C. and Dunn, S.Proc. IEEE MTT-S Symp. Dig. 3, 1235 (1991).Google Scholar
26Dorothy, R. G.Face, D. W.Holstein, W. L.Wilker, C.Shen, Z. Y. and Laubacher, D. B.Advances in Superconductivity III, edited by Kajimura, K. and Hayakawa, H. (Springer-Verlag, Tokyo, 1991), pp. 11751178.CrossRefGoogle Scholar
27Khanna, A. P. S.Schmidt, M. and Hammond, R.B.Microwave J. 34, 127 (1991).Google Scholar
28Bourne, L. C.Hammond, R. B.Robinson, M.Eddy, M. M.Olson, W. L. and James, T. W.Appl. Phys. Lett. 56, 2333 (1990).CrossRefGoogle Scholar
29Hammond, R.B.Negrete, G.V.Schmidt, M.S.Moskowitz, M.J.Eddy, M.M.Strother, D.D. and Skogland, D.L.IEEE MTT-S Symp. Dig. 2, 867 (1990).Google Scholar