Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:42:19.892Z Has data issue: false hasContentIssue false

Effect of quenching and tempering on microstructure and mechanical properties of 410 and 410 Ni martensitic stainless steels

Published online by Cambridge University Press:  05 January 2017

Masoud Mirzaee*
Affiliation:
Department of Materials, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran
Amir Momeni*
Affiliation:
Materials Science and Engineering Department, Hamedan University of Technology, Hamedan 6516913733, Iran
Niloofar Aieni
Affiliation:
Materials Science and Engineering Department, Hamedan University of Technology, Hamedan 6516913733, Iran
Hamid Keshmiri
Affiliation:
Esfarayen Steel Complex, Esfarayen 1589673711, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this research, the effect of austenitizing at 900–1100 °C and tempering at 250–650 °C on the microstructure and mechanical properties of 410 and 410 Ni martensitic stainless steels was investigated. The transformation of austenite to ferrite surrounded the austenitizing within the temperature range of 900–1050 °C. The grain size and hardness measurements proved that austenitizing at 1050 °C leads to the partial dissolution of carbides without a considerable growth of austenite grains. The mechanical tests showed two peaks in strength and troughs in ductility by tempering at 450 and 650 °C due to the formation of primary and secondary carbides. The better ductility and fracture toughness in 410 Ni, comparing to 410, were attributed to the effect of Ni on stacking fault energy. Fractured surfaces revealed ductile fracture of the samples tempered at low temperatures, e.g., 250 °C. However, after tempering at 450 and 650 °C, 410 showed a brittle fracture and 410 Ni exhibited a dual intergranular-brittle fracture mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Lim, L.C., Lai, M.O., and Ma, J.: Tempering of AISI 403 stainless steel. Mater. Sci. Eng., A 171, 13 (1993).CrossRefGoogle Scholar
Tsai, M.C., Chiou, C.S., Du, J.S., and Yang, J.R.: Phase transformation in AISI 410 stainless steel. Mater. Sci. Eng., A 332, 1 (2002).CrossRefGoogle Scholar
Xu, L., Yan, Z., Liu, Y., Li, H., Ning, B., and Qiao, Z.: Microstructure evolution and martensitic transformation behaviors of 9Cr–1.8W–0.3Mo ferritic heat-resistant steel during quenching and partitioning treatment. J. Mater. Res. 20, 2835 (2013).CrossRefGoogle Scholar
Ping, D.H., Ohnuma, M., Hirakawa, Y., Kadoya, Y., and Hono, K.: Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Mater. Sci. Eng., A 394, 285 (2005).CrossRefGoogle Scholar
Nasery Isfahany, A., Saghafian, H., and Borhani, G.: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J. Alloys Compd. 509, 3931 (2011).CrossRefGoogle Scholar
Kim, H.D. and Kim, I.S.: Effect of austenitising temperature on microstructure and mechanical properties of 12% Cr steel. ISIJ Int. 34, 198 (1994).CrossRefGoogle Scholar
Morito, S., Saito, H., Ogawa, T., Furuhara, T., and Maki, T.: Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels. ISIJ Int. 45, 91 (2005).CrossRefGoogle Scholar
Wang, C., Wang, M., Shi, J., Hui, W., and Dong, H.: Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J. Mater. Sci. Technol. 23, 659 (2007).Google Scholar
Ebrahimi, G.R., Keshmiri, H., and Momeni, A.: Effect of heat treatment variables on microstructure and mechanical properties of 15Cr–4Ni–0.08C martensitic stainless steel. Ironmaking Steelmaking 38, 123 (2011).CrossRefGoogle Scholar
Tamura, M., Harughuchi, Y., Yayashita, M., Nagaoka, Y., Ohinata, K., Ohnishi, K., Itoh, E., Ito, H., Shinozoka, K., and Eska, H.: Tempering behavior of 9% Cr–1% Mo–0.2% V steel. ISIJ Int. 46, 1693 (2006).CrossRefGoogle Scholar
Kennett, S.C., Krauss, G., and Findley, K.O.: Prior austenite grain size and tempering effects on the dislocation density of low-C Nb–Ti microalloyed lath martensite. Scripta Mater. 107, 123 (2015).CrossRefGoogle Scholar
Reguly, A., Strohaecker, T.R., Kraus, G., and Matlock, D.K.: Quench embrittlement of hardened 5160 steel as a function of austenitising temperature. Met. Mater. Trans. A 35, 153 (2004).CrossRefGoogle Scholar
Wang, X.D., Zhong, N., Rong, Y.H., Hsu (Z.Y. Xu), T.Y., and Wang, L.: Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process. J. Mater. Res. 24, 260 (2009).CrossRefGoogle Scholar
Ohmura, T., Hara, T., Tsuzaki, K., Nakatsu, H., and Tamura, Y.: Mechanical characterisation of secondary-hardening martensitic steel using nanoindentation. J. Mater. Res. 19, 79 (2004).CrossRefGoogle Scholar
Chakraborty, G., Das, C.R., Albert, S.K., Bhaduri, A.K., Thomas Paul, V., Panneerselvam, G., and Dasgupta, A.: Study on tempering behaviour of AISI 410 stainless steel. Mater. Charact. 100, 81 (2015).CrossRefGoogle Scholar
Hsu, C.H., Teng, H.Y., and Lee, S.C.: Effects of heat treatment and testing temperature on fracture mechanics behavior of low-Si CA-15 stainless steel. Met. Mater. Trans. A 35, 471 (2004).CrossRefGoogle Scholar
Lim, L.C., Lai, M.O., Ma, J., Northwood, D.O., and Miao, B.: Tempering of AISI 403 stainless steel. Mater. Sci. Eng., A 171, 13 (1993).CrossRefGoogle Scholar
Song, Y.Y., Ping, D.H., Yin, F.X., Li, X.Y., and Li, Y.Y.: Microstructural evolution and low temperature impact toughness of a Fe–13% Cr–4% Ni–Mo martensitic stainless steel. Mater. Sci. Eng., A 527, 614 (2010).CrossRefGoogle Scholar
Wan, N., Xiong, W., and Suo, J.: Mathematical model for tempering time effect on quenched steel based on hollomon parameter. J. Mater. Sci. Technol. 21, 803 (2005).Google Scholar
Furuhara, T., Kobayashi, K., and Maki, T.: Control of cementite precipitation in lath martensite by rapid heating and tempering. ISIJ Int. 44, 1937 (2004).CrossRefGoogle Scholar
Wang, P., Lu, S.P., Xiao, N.M., Li, D.Z., and Li, Y.Y.: Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng., A 527, 3210 (2010).CrossRefGoogle Scholar
Cardoso, P.H.S., Kwietniewski, C., Porto, J.P., Reguly, A., and Strohaecker, T.R.: The influence of delta ferrite in the AISI 416 stainless steel hot workability. Mater. Sci. Eng., A 351, 1 (2003).CrossRefGoogle Scholar
Lin, Y.C., Deng, J., Jiang, Y-Q., Wen, D-X., and Liu, G.: Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Sci. Eng., A 598, 251 (2014).CrossRefGoogle Scholar
Lin, Y.C., Deng, J., Jiang, Y-Q., Wen, D-X., and Liu, G.: Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy at elevated temperature. Mater. Des. 55, 949 (2014).CrossRefGoogle Scholar
Wang, X.D., Zhong, N., Rong, Y.H., Hsu (Z.Y. Xu), T.Y., and Wang, L.: Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process. J. Mater. Res. 24, 260 (2009).CrossRefGoogle Scholar
Kruss, G.: Steels: Heat Treatment and Processing Principles, 4th ed. (ASM International, OHIO, 1995).Google Scholar
Ebrahimi, G.R., Momeni, A., Abbasi, S.M., and Monajatizadeh, H.: Constitutive analysis and processing map for hot working of a Ni–Cu alloy. Met. Mater. Int. 19, 11 (2013).CrossRefGoogle Scholar
Wang, J., Zuo, R.L., Sun, Z.P., Li, C., Liu, H.H., Yang, H.S., Shen, B.L., and Huang, S.J.: Influence of secondary carbides precipitation and transformation on hardening behavior of a 15Cr–1Mo–1.5V white iron. Mater. Charact. 55, 234 (2005).CrossRefGoogle Scholar
Zhong, P.: Microstructure and mechanical properties in isothermal tempering of high Co-Ni secondary hardening ultrahigh strength steel. J. Iron Steel Int. 14, 292 (2007).CrossRefGoogle Scholar
Moon, H.K., Lee, K.B., and Kwon, H.: Influences of Co addition and austenitising temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W–Mo–Cr–V(–Co) system. Mater. Sci. Eng., A 474, 328 (2008).CrossRefGoogle Scholar
Yang, H.R., Lee, K.B., and Kwon, H.: Effects of austenitising treatments and inclusions on secondary hardening and fracture behavior for high Co–Ni steels containing W. Mater. Sci. Eng., A 265, 179 (1999).CrossRefGoogle Scholar
Asgari, S., El-Danaf, E., Shaji, E., Kalidindi, S.R., and Doherty, R.D.: The secondary hardening phenomenon in strain-hardened MP35N alloy. Acta Mater. 16, 5795 (1998).CrossRefGoogle Scholar
Briant, C.L. and Banerji, S.K.: Tempered martensite embrittlement and intergranular fracture in an ultra-high strength sulfur doped steel. Met. Trans. A 12, 309 (1981).CrossRefGoogle Scholar
Kiely, J.D., Yeh, T., and Bonnell, D.A.: Evidence for the segregation of sulfur to Ni-alumina interfaces. Surf. Sci. 393, L126 (1997).CrossRefGoogle Scholar
Chen, T., Chen, X.D., Lian, X.M., and Liu, C.J.: Grain boundary and surface segregation in relation to intergranular fracture at high temperature: Boron and sulfur in a Fe-Cr-Ni alloy. Procedia Eng. 130, 589 (2015).CrossRefGoogle Scholar
Mulford, R.A.: Grain boundary segregation in Ni and binary Ni alloys doped with sulfur. Met. Trans. 14, 865 (1983).CrossRefGoogle Scholar
Mohammadi Shore, F., Morakabati, M., Abbasi, S.M., and Momeni, A.: Hot deformation behavior of Incoloy 901 through hot tensile testing. J. Mater. Eng. Perform. 23, 1424 (2014).CrossRefGoogle Scholar
Abbasi, S.M., Morakabati, M., Mahdavi, R., and Momeni, A.: Effect of microalloying additions on the hot ductility of cast FeNi36. J. Alloys Comp. 639, 602 (2015).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).Google Scholar
Najafabadi, R., Wang, H.Y., Srolovitz, D.J., and LeSar, R.: The effects of segregation on grain boundary cohesive energies in Ni3−x Al1+x . Scr. Metall. 25, 2497 (1991).CrossRefGoogle Scholar