Published online by Cambridge University Press: 31 January 2011
The influence of sintering temperature, sintering and annealing atmospheres, and quench rate on the properties of the high-temperature superconductor YBa2Cu3Oy has been investigated by electrical resistivity and magnetic susceptibility measurements, thermogravimetric analysis, powder x-ray diffraction, and scanning electron microscopy. Room-temperature resistivity and the transition width decreased, and the fraction of the superconducting material and the bulk density increased with increase in the sintering temperature, but had no effect on the transition temperature (Tc) for samples fired in flowing oxygen. A sample that was rapidly quenched from 930 °C to room temperature after sintering in air had a perovskite structure and Tc (onset) ∼90 K but its resistance did not become zero even at 77 K. A sample sintered in air at 930 °C and furnace cooled had Tc (midpoint) of ∼89.6 K and transition width (10%–90%) of ∼2.6 K. The loss and gain of oxygen occurs reversibly in YBa2Cu3Oy.